High performance computing enhancements to WRFV3.5

Tianhe-2, #1 Top 500 list, June 2013

John Michalakes

Computational Sciences Center National Renewable Energy Laboratory

WRF Users Workshop

June 25, 2013

Contributors

- Intel Corp.
 - Michael Greenfield
 - Lawrence Meadows
 - Alexander Knyazev
 - Indraneil Gokhale
 - Ruchira Sasanka
- NCAR
 - WRF Developers Committee

- U. Wisconsin/SSEC
 - Jarno Mielikainen
 - Bormin Huang
- Alexandria University, Egypt
 - Ahmed Saeed et al.
- U. Colorado
 - Jeremy Siek
- NREL
 - Jim Albin

NUDT Tianhe-2 (China) and Intel Phi

- **#1**, June 2013 Top500 list
- 16,000 nodes, each with
 - 2 × hex-core Intel Xeon 2.2GHz (IvyBridge)
 - 3×57 -core Xeon Phi 1.1 GHz
 - 30.65 PFLOPs (10¹⁸ FLOP s⁻¹) (Linpack)
- Previous #1 system: ORNL's Titan
 - 18,688 nodes each with AMD and <u>NVIDIA Kepler 20x</u> GPUs
 - 17.6 PFLOPs

Tianhe-2 System (above) Intel Xeon Phi cards in Tianhe-2 (below)

From "Visit to the National University for Defense Technology Changsha, China." Jack Dongarra, University of Tennessee, and Oak Ridge National Laboratory. June 2013. www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

Many Integrated Core (MIC), Knights Corner

Teraflop "Cluster on a Chip"

- 61 Intel x86 CPUs (cores)
- Separate co-processor, but with its own network address
 - Supports login and shell
 - NFS-mounts host file systems
 - Runs as node in a larger MPI job
- Programmed like a cluster
 - Fortran/C/C++
 - MPI and OpenMP
 - WRF ported in 4 days (2011)
- Performance comes from concurrency (threads) and vectorization
- Porting straightforward, but optimization is still a task

Intel Phi's (KNC) in drawer of TH-2

Optimization for Xeon Phi

Optimization for Xeon Phi

- Performance analysis showed
 - Inadequate vectorization from misalignment and loop peeling
 - Large memory footprint not fitting in L1 and L2 caches
 - Memory latency bound and not saturating memory bandwidth

Optimization for Xeon Phi

- Performance analysis showed
 - Inadequate vectorization from misalignment and loop peeling
 - Large memory footprint not fitting in L1 and L2 caches
 - Memory latency bound and not saturating memory bandwidth
- Optimizations
 - 1. Break outer loop over j into small chunks. More thread parallelism; smaller footprint per thread.
 - 2. Compute using thread-private statically sized arrays. Improved vectorization.
 - Combine/eliminate temporaries to reduce footprint from 100KB → 60KB thread. More threads/core hide memory latency.

- Host CPU and Intel Phi run identical source code
- Effort optimizing for Phi benefits host

* Improved GPU/CUDA Based Parallel Weather and Research Forecast (WRF) Single Moment 5-Class (WSM5) Cloud Microphysics. J. Mielikainen, B. Huang, H-L. A. Huang, and M.D. Goldberg. IEEE JSTARS, Vol. 5, No. 4, Aug. 2012 and personal communication

Higher is better

Whole code performance

CONUS 12km*			w/o wsm5 optim.
1 node	Xeon (2x SNB-EP, 16 cores):	109.2s	was 123.9s
1 node	Intel Phi (KNC, 61 cores):	109.6s	was 119.2s
CONUS 2.5km*			with and w/o Phi
8 nodes	2x SNB per node	328.4s	
8 nodes	2x SNB + KNC per node	223.5s	profit: 1.47x

- Standard 12km and 2.5km benchmark cases
 - Times in seconds for 3 hour simulations, compute-only
 - http://www.mmm.ucar.edu/wrf/WG2/bench
- CONUS 12km (*Indraneil Gokhale, Intel Corp.)
 - Phi performance equivalent to two Xeon SNB-Eps
 - Phi-optimized WSM5 code yielded 10-13% improvement on both systems
- CONUS 2.5 (*Alexander Knyazev, Intel Corp.)
 - Comparison of run times with and without using Phi on nodes
 - Here, the Phi card adds the equivalent of another Xeon SNB-EP processor

Future work and summary

- Accelerators are on the path forward for HPC
 - Tianhe-2 (MIC) #1 and Titan (GPU) #2 Top 500
 - Are accelerator architectures stable?
 - Are the programming models effective?
 - Is performance portability possible?
- WRF results:
 - Individual kernels show promise
 - Whole code results are preliminary (MIC) or in progress (GPU)