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Outline

Evaluation of different model-error schemes in the WRF
mesoscale ensemble: stochastic, multi-physics and combinations
thereof

Where is the additional skill coming from? Is it just the increased
spread?
2 Decompose Brierscore into components

72  Ability of different model-error scheme to capture structural
uncertainty

How does the increased skill compare against that of
postprocessing the forecasts

72 Impact of calibration
72 Impact of debiasing
72  Impact of model-version



Experimental Setup

Weather Research and Forecast Model WRFV3.1.1.

15 dates between Nov 2008 and Dec 2009, 00Z and 127, 30
cycles or cases

45km horizontal resolution and 41 vertical levels
Limited area model: Continuous United States (CONUS)

Initial and boundary conditions from GFS (downscaled
from NCEPs Global Forecast System)

Verification against 3003 surface observations from the
aviation routine weather report measurements (METAR)
(and 106 soundings)

Observation error not taken into account



Model-error Experiments

Experiment Model-error representation Color Reference

CNTL Control Physics blue Hacker et al. (2011b)
PARAM Multi-parameter scheme cyan Hacker et al. (2011a)
SKEBS Stochastic kinetic-energy red Berner et al. (2011)

backscatter scheme

SPPT Stochastically perturbed ; Palmer et al. (2009)

physics tendencies

PHYS10 Multi-physics (10 packages) green Hacker et al. (2011b)
Berner et al. (2011)

PHYS10_SKEBS Multi-physics (10 packages) + magenta | Berner et al. (2011)
+ SKEBS
PHYS3 SKEBS PARAM | Limited multi-physics + black Hacker et al. (2011Db)

(3 packages) + PARAM + SKEBS




Stochastic parameterization schemes

Stochastic kinetic-energy Stochastically perturbed
backscatter scheme (SKEBS) parameterization scheme (SPPT)
Rationale: A fraction of the Rationale: Especially as
dissipated kinetic-energy is resolution increases, the

equilibrium assumption is no

available as forcing for the longer valid gnd fluctuations
of the subgrid-scale state

resolved flow (Shutts, 2005, should be sampled (Buizza et
Mason and Thomson 1992) al. 1999, Palmer et al. 2009)

scattered upscale and




Potential to reduce model error

Stochastic

parameterizations can —
Potential

change the mean and

variance of a PDF

Impacts variability of ; ;
model (e.g. internal Weakinoise Strong noise
variability of the ' ‘
atmosphere)

Impacts systematic error
(e.g. blocking
precipitation error)

. R
Unimodal Multi-modal




Multi-Physics combinations

Member | Land Surface | Microphysics | PBL | Cumulus | Longwave | Shortwave
1 Thermal Kessler YSU KF RRTM Dudhia
2 Thermal WSM6 MYJ KF RRTM CAM
3 Noah Kessler MYJ BM CAM Dudhia
4 Noah Lin MYJ Grell CAM CAM
5 Noah WSM6 YSU KF RRTM Dudhia
6 Noah WSM6 MYJ Grell RRTM Dudhia
7 RUC Lin YSU BM CAM Dudhia
8 RUC Eta MYJ KF RRTM Dudhia
9 RUC Eta YSU BM RRTM CAM
10 RUC Thompson | MYJ Grell CAM CAM

TABLE 2. Configuration of the multi-physics ensemble. Abbreviations are: BM — Betts-Miller;
CAM — Community Atmosphere Model; KF — Kain-Fritsch; MYJ — Mellor-Yamada-Janjic;
RRTM — Rapid Radiative Transfer Model; RUC — Rapid Update Cycle; WSM6 — WRF Single-
Moment Six-class; YSU — Yonsei University. For details on the physical parameterization

packages and references see Skamarock et al. (2008).



Spread, Error and Brierscore
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Decomposition of Brierscore
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Are model-error schemes

merely influencing

reliability (linked to

spread) or also resolution?

e Resolution and
reliability are both
increased

* Order stays more or
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Brier skillscore
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What if all ensemble systems had the

same spread?

Calibrate all ensemble systems so that each
member has the same variability as the
observations (Doblas-Reyes et al., 2005; Kharin and
Zwiers, 2003, Hamill and Colucci, 1998 )

Calibrated ensemble systems will have similar
spread

Just another way of assessing the role of spread




Calibration of ensemble systems

2i; = a; + BTy with a=p

Sem Se,i

Fullfills two conditions:

The variance of the inflated prediction is the same as
that of the reference (here observations) (Hamill and
Colucci, 1998)

The potentially predictable signal after inflation is made
equal to the correlation of the ensemble mean with the
observations (Kharin and Zwiers, 2003a)

2 Correlation between ensemble mean and observations is
not changed



Brier score of calibrated ensemble

systems
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Impact of other postprocessing methods

Debiasing

A combination of debiasing
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Impact of changing
model-versions

Now SPPT, but not PARAM

Multi-physics has changed
and is now clearly
overdispersive => big
problem for maintainance




IEE

Zonal Wind U at 700hPa Temperature T at 700hPa
015+ Or
02+
02+
8 025+ 8
1] 1]
03+
04+
035+
04+
' ' ' ' 06+~ ' ' ' '
0 12 24 36 48 60 0 12 24 36 48 60

Zonal Wind U at 10m Temperature at 2m
097 ' ' e ' ' '

Bias
Bias




Impact Summary

BSS _ Bsexp,raw - BSexp,post
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B exp,raw
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What is the relative impact of postprocessing (debiasing,
calibration, changing model versions)

Compute skill of postprocesses ensemble forecast over
raw ensemble forecasts

Done for each experiment separately, e.g. SKEBS
postprocesses is compared to SKEBS raw

Take the average of the skill score over all forecast times
(exclude initial time)



Impact Summary
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Comments

Results hold qualitatively for other verification
thresholds

Results significant at 95% except PARAM

If obs error is included results still hold
qualitatively, but significance is reduced

In free atmosphere SKEBS tends to outperfrom
PHYS10



Conclusions

Model-error schemes improve forecast skill by
improving both, reliability and resolution

The impact is of comparable magnitude to that of
common postprocessing methods

Combining multiple model-error schemes yields
consistently best results



SKEBS tutorial and informal discussion

Stochastic Kinetic-Energy Backscatter Scheme
Friday, 10:30 - 12:00
Tutorial

Informal discussion group
? Feedback to developers

72 Network with other users, especially on applications
SKEBS was not directly developed for







Skill of calibrated forecasts

At 12h difference between
RMSE and spread was ca.
1.3m/s and 2.0K, now
0.4m/s and 0.2K

Spread between ensemble
systems is much closer
Brier score increases
Combination of multiple
model-error schemes
performs still best, but has
still most spread.
Multi-physics performs
very well
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