

Evaluation of Different Model-Error schemes in a WRF mesoscale ensemble

14th WRF Users' Workshop, June 24-28, 2013, Boulder, CO

Judith Berner, Kate R. Smith, So-young Ha, Josh Hacker, Chris Snyder (NCAR)

Outline

- Evaluation of different model-error schemes in the WRF mesoscale ensemble: stochastic, multi-physics and combinations thereof
- Where is the additional skill coming from? Is it just the increased spread?
 - Decompose Brierscore into components
 - Ability of different model-error scheme to capture structural uncertainty
- How does the increased skill compare against that of postprocessing the forecasts
 - Impact of calibration
 - Impact of debiasing

Experimental Setup

- Weather Research and Forecast Model WRFV3.1.1.
- 15 dates between Nov 2008 and Dec 2009, 00Z and 12Z, 30 cycles or cases
- ✓ 45km horizontal resolution and 41 vertical levels
- Limited area model: Continuous United States (CONUS)
- Initial and boundary conditions from GFS (downscaled from NCEPs Global Forecast System)
- Verification against 3003 surface observations from the aviation routine weather report measurements (METAR) (and 106 soundings)
- Observation error not taken into account

Model-error Experiments

Experiment	Model-error representation	Color	Reference		
CNTL	Control Physics	blue	Hacker et al. (2011b)		
PARAM	Multi-parameter scheme	cyan	Hacker et al. (2011a)		
SKEBS	Stochastic kinetic-energy	red	Berner et al. (2011)		
	backscatter scheme				
SPPT	Stochastically perturbed	orange	Palmer et al. (2009)		
	physics tendencies				
PHYS10	Multi-physics (10 packages)	green	Hacker et al. (2011b)		
			Berner et al. (2011)		
PHYS10_SKEBS	Multi-physics (10 packages) $+$	magenta	Berner et al. (2011)		
	+ SKEBS				
PHYS3_SKEBS_PARAM	Limited multi-physics +	black	Hacker et al. (2011b)		
	(3 packages) + PARAM + SKEBS				

Stochastic parameterization schemes

Stochastic kinetic-energy backscatter scheme (SKEBS)

Rationale: A fraction of the dissipated kinetic-energy is scattered upscale and available as forcing for the resolved flow (Shutts, 2005, Mason and Thomson 1992)

Stochastically perturbed parameterization scheme (SPPT)

Rationale: Especially as resolution increases, the equilibrium assumption is no longer valid and fluctuations of the subgrid-scale state should be sampled (Buizza et al. 1999, Palmer et al. 2009)

Potential to reduce model error

- Stochastic parameterizations can change the mean and variance of a PDF
- Impacts variability of model (e.g. internal variability of the atmosphere)
- Impacts systematic error (e.g. blocking precipitation error)

Multi-Physics combinations

Member	Land Surface	Microphysics	PBL	Cumulus	Longwave	Shortwave	
1	Thermal	Kessler	YSU	KF	RRTM	Dudhia	
2	Thermal	WSM6	MYJ	KF	RRTM	CAM	
3	Noah	Kessler	MYJ	BM	CAM	Dudhia	
4	Noah	Lin	MYJ	Grell	CAM	CAM	
5	Noah	WSM6	YSU	KF	RRTM	Dudhia	
6	Noah	WSM6	MYJ	Grell	RRTM	Dudhia	
7	RUC	Lin	YSU	BM	CAM	Dudhia	
8	RUC	Eta	MYJ	KF	RRTM	Dudhia	
9	RUC	Eta	YSU	BM	RRTM	CAM	
10	RUC	Thompson	MYJ	Grell	CAM	CAM	

TABLE 2. Configuration of the multi-physics ensemble. Abbreviations are: BM – Betts-Miller; CAM – Community Atmosphere Model; KF – Kain-Fritsch; MYJ – Mellor-Yamada-Janjic; RRTM – Rapid Radiative Transfer Model; RUC – Rapid Update Cycle; WSM6 – WRF Single-Moment Six-class; YSU – Yonsei University. For details on the physical parameterization packages and references see Skamarock et al. (2008).

Spread, Error and Brierscore (Threshold o<x< + \sigma)

"CNTL < PARAM < SKEBS < PHYS10 < PHYS3_SKEBS_PARAM < PHYS10_SKEBS"

Decomposition of Brierscore

Brier skillscore

CNTL	
PARAM	
SKEBS	
PHYS10	
PHYS10_SKEBS	
PHYS3_SKEBS_PARAM	

$$\mathrm{BSS}_{\mathrm{exp}} = \frac{\mathrm{BS}_{\mathrm{ref}} - \mathrm{BS}_{\mathrm{exp}}}{\mathrm{BS}_{\mathrm{ref}}}.$$

- Normally climatology is reference, but here CNTL
- Measures skill improvements of model-error schemes over CNTL

What if all ensemble systems had the same spread?

- Calibrate all ensemble systems so that each member has the same variability as the observations (Doblas-Reyes et al., 2005; Kharin and Zwiers, 2003, Hamill and Colucci, 1998)
- Calibrated ensemble systems will have similar spread
- Just another way of assessing the role of spread

Calibration of ensemble systems

$$z_{ij} = lpha \mu_i + eta x_{ij};$$
 with $lpha =
ho rac{s_r}{s_{em}}$ and $eta_i = s_r rac{\sqrt{1-
ho^2}}{s_{e,i}},$

Fullfills two conditions:

- 1. The variance of the inflated prediction is the same as that of the reference (here observations) (Hamill and Colucci, 1998)
- 2. The potentially predictable signal after inflation is made equal to the correlation of the ensemble mean with the observations (Kharin and Zwiers, 2003a)
 - Correlation between ensemble mean and observations is not changed

Brier score of calibrated ensemble systems

- Model-error schemes have different resolution and reliability
- Ability to represent structural uncertainty better?

"CNTL < PARAM < SKEBS < PHYS10 < {PHYS3_SKEBS_PARAM < PHYS10_SKEBS}"

Impact of other postprocessing methods

- Debiasing
- A combination of debiasing

Impact of changing model-versions

- Now SPPT, but not PARAM
- Multi-physics has changed and is now clearly overdispersive => big problem for maintainance

Bias

Impact Summary

- What is the relative impact of postprocessing (debiasing, calibration, changing model versions)
- Compute skill of postprocesses ensemble forecast over raw ensemble forecasts
- Done for each experiment separately, e.g. SKEBS postprocesses is compared to SKEBS raw
- Take the average of the skill score over all forecast times (exclude initial time)

Impact Summary

Comments

- Results hold qualitatively for other verification thresholds
- Results significant at 95% except PARAM
- If obs error is included results still hold qualitatively, but significance is reduced
- In free atmosphere SKEBS tends to outperfrom PHYS10

Conclusions

- Model-error schemes improve forecast skill by improving both, reliability and resolution
- The impact is of comparable magnitude to that of common postprocessing methods
- Combining multiple model-error schemes yields consistently best results

SKEBS tutorial and informal discussion group

- Stochastic Kinetic-Energy Backscatter Scheme
- オ Tutorial
- Informal discussion group
 - Feedback to developers
 - Network with other users, especially on applications
 SKEBS was not directly developed for

Skill of calibrated forecasts

- At 12h difference between RMSE and spread was ca. 1.3m/s and 2.0K, now 0.4m/s and 0.2K
- Spread between ensemble ٠ systems is much closer

a) 2

2.2

1.8

1.6 0

i)

0.08

0.06

0.04

0.02 0 0

12

24

Forecast Lead time

36

48

Brier Skill Score

2

Spread/Error

- Brier score increases •
- Combination of multiple ٠ model-error schemes performs still best, but has still most spread.
- Multi-physics performs • very well

						CNTL PARAM SKEBS PHYS10 PHYS10_SKEBS PHYS3_SKEBS_PARAN					_
Zon 12	al Winc	I U at 1	0m 	60	(d 2.5 2.5 2.5 2.6 2.6	2	Те 	emperat	ure at 2	2m 	60
			.0		j) 9.0.0 8.0.0	3					

Brier Skill 0.04

60

0.02

0

12

24

Forecast Lead time

36

48

60