

Simple urban parameterization for high resolution meteorology and air quality.

Jonathan Pleim, Robert Gilliam, James Kelly, Kirk Baker, and Chris Misenis, USEPA Limei Ran, UNC

A Simple Bulk Urban Approach for PX LSM

 Leverage very high resolution National Land Cover Database (NLCD) with multi-level urban classifications

-PX LSM considers subgrid LU fractions

- Utilize NLCD-based Impervious surface data directly in landsurface model to scale surface heat capacity
- Increase surface roughness for urban LU classes to better represent developed areas
- Decrease albedo in urbanized areas to account for sky-view and radiation trapping effects
- Use NLCD tree canopy coverage data in ET model

Effects of Urban Modifications

- Higher surface heat capacity of impervious surfaces:
 - -Greater heat storage \rightarrow warmer nighttime temperatures
 - -Less stable nocturnal boundary layer
 - -Less H in late morning greater H in afternoon/evening
 - Reduced overprediction of emitted concentrations in evening and early morning.
- Reduced albedo
 - -Increases daytime heating but countered by greater HC
- Increased roughness \rightarrow greater u_{*}, lower windspeed

Model Evaluation

- Houston TexAQS 2006
 - -WRF 12/4/1 km with and without urban mods
 - -CMAQ 4 km with and without Urban
- CARES/CALNEX 2010 4km WRF, CMAQ, WRF/CMAQ
 - -Effects of urban treatment on surface T, H, PBL, NO_X , O_3
- DISCOVER-AQ 2011
 - -WRF and WRF/CMAQ 12/4/1 km with and without Urban
 - -Preliminary results

Impervious and Canopy Fraction (%) for 4km Grid

1 km Model Grid for Houston, TX

2-m Temperature at 6 AM LT, Aug 31, 2006

BaseUrbanUrban - BaseUrban model show early morning UHI while base model doesn't

AQ in Dallas: August 24 – September 8, 2006

>Urban mods effective for Dallas in lowering nocturnal NO_x and PM_{2.5}

Average difference (Urban – Base) at 19 PST

Slower evening collapse of PBL ht in urban areas reduces NO_{x} and increases O_{3}

Office of Research and Development Atmospheric Modeling & Analysis Division, National Exposure Research Laboratory

Agency

PBL Height N Main St, LA May 7 – June 30, 2010

Urban scheme increases PBL ht at night and evening

N. Main St, LA

Greater HC decreases H in morning but increases in late afternoon and evening

Greater z_o in urban areas reduces wind speed

O_3 , NO_x bias - N Main St, LA May 7 – June 30, 2010

Urban reduces NO_x over- and O₃ under-prediction in evening and early morning

1 km WRF for Discover-AQ

Scaling heat capacity by impervious surface results in warmer T_{skin} at night but cooler T_{skin} in morning

Conclusions

- Simple urban parameterization using high resolution impervious fraction and canopy fraction improves surface energy and PBL simulation in urban areas
 - -Better representation of nocturnal UHI effects
 - -Slows stabilization during evening transition
 - Reduces nighttime, early morning, and evening overpredictions of ground emitted pollutants

Next steps

- Add simple algorithm for anthropogenic heating and moistening, leveraging data in emission inventory database such as population density, FEMA building square footage, and mobile emissions
- Comprehensive evaluation of 2-way coupled WRF/CMAQ model simulation with urban scheme at 4 km and 1 km grid resolution using field measurements from DISCOVER-AQ 2011