

Dong Peiming Huang Jiangping Xiang-yu Huang Zhuquan Liu Xin Zhang also thanks the contribution of Michael Kavulich and Jianyu Liu

14th WRF User's Workshop, 24-28 June 2013, Boulder

ø Background

The implement of FY-3 and NPP microwave satellite data assimilation in WRFDA

The preliminary experiment of FY-3 and NPP microwave satellite data assimilation in WRFDA

The extension of RTTOV microwave particle scattering module in WRFDA

Conclusion and discussion

1 Background

In the near future decade, NPP/JPSS together with METOP, and FY3, are the important meteorological satellites for NWP.

Background

- Compared to AMSUA/MHS, MWTS/MWHS and ATMS onboard on FY-3A/B and NPP, respectively are two new microwave sensors.
- Microwave satellite observation is the top contributor to the improvement of numerical weather forecast.

The use of those microwave satellite observation in data assimilation system is developed or going on:
 FY-3A in ECMWF (Lu et al., 2011)
 ATMS in ECMWF (NIELS B et al., 2012)
 ATMS in NCEP (Collard, A et al., 2012)

The implement of FY-3 and NPP microwave satellite data assimilation in WRFDA is a crucial issue.

The implement of FY-3 and NPP microwave stellite data assimilation in WRFDA

Table 1 The characteristics of sensor MWTS/MWHS compared to AMSUA/MWHS

Channel Number		Centre Frenquency (GHz)	Bandwidth (MHz)	NEAT (K)		Nadir Resolution (km)		Weight Function Peak (hPa)		Swath Width (km)	
MSU-A	MWTS	AMSU-A MWTS	AMSU-A MWTS	AMSU-A	MWTS	AMSU-A	MWTS	AMSU-A	MWTS	AMSU-A	MWTS
3	ΞŢ	50.30(V)	180	0.40	0.50	48	62	surface	Surface	2300	2250
5	2	53.596 <u>+</u> 0.115(H)	2*170	0.25	0.40	48	62	700	700	2300	2250
7	3	54.94(V)	400	0.25	0.40	48	62	270	300	2300	2250
9	4	57.29(H)	330	0.25	0.40	48	62	90	70	2300	2250
Chan	nel	Centre Frenquency	Bandwidth	NE A I	r (K)	Nadir F	Resolution	Weight	Function	Swath	n Width
			(MHz)				km)	Peal	x (hPa)	()	m)
Numb	ber	(GHz)					08 - JUS	1.1.77	- (//		71.7
Numb MHS	ber MWHS	(GHz) MHS MWHS	MHS MWHS	MHS	MWHS	MHS	MWHS	MHS	MWHS	MHS	MWHS
6.1		1200		MHS 0.84	MWHS 0.90		H.	 	1/1	01	67
MHS		MHS MWHS	MHS MWHS			MHS	MWHS	MHS	MWHS	MHS	MWHS
MHS 1	MWHS 1	MHS MWHS 89(V) 150(V)	MHS MWHS 1000*2	0.84	0.90	MHS 15	MWHS 15	MHS surface	MWHS Surface	MHS 2250	- MWHS 2700
MHS 1 2	MWHS 1 2	MHS MWHS 89(V) 150(V) 157(V) 150 (H)	MHS MWHS 1000*2 1000*2	0.84 0.84	0.90 0.90	MHS 15 15	MWHS 15 15	MHS surface surface	MWHS Surface Surface	MHS 2250 2250	MWH9 2700 2700

Special items:

1) MWTS has four channels;

2) Difference in window channel:

one window channel;

-u MWHS channel 1 is switched from 89 to 150 GHz, the same as channel 2 except the polarization.

The characteristics of sensor MWTS/MWHS compared to AMSUA/MHS

The characteristics of sensor ATMS compared to AMSUA/MHS

Unique characteristics:

1) ATMS has seven channels in humility unit;

2) Difference in window channel:

u Channel 4 is added while channel 15 is taken away in AMSUA temperature unit;

u The frequency of channel 17 is changed from 150 in MHS to 165 GHz;

3) The increase of swatch width and observation number, especially in temperature unit.

ATMS	AMSU	Centre	Absobr	Weight	Polarisation		
Channel Number	Channel Number	Frenquency (GHz)	R	Function – Peak	ATMS	AMSU	
1	1	23.8	H ₂ 0	Surface	// v / /	v s	
2	K 2	31.4	H_20	Surface	v	v	
3	3	50.3	02	Surface	Н	V	
4		51.76	02	Surface	Н		
5	4	52.8	02	Surface	Н	V	
6	5	53.596+/-0.116	02	700 hPa	н М	н	
7	6	54.4	02	400 hPa	н 🖓	(н С	
8	7	54.94	02	250 hPa	Н	V	
9	8	55.5	02	180 hPa	-578 H	н	
10	9	$f_0 = 57.290334$	02	90 hPa	H	Н	
11	10	f ₀ +/-0.217	02	50 hPa	н	H	
12	11	f_0 +/-0.3222+/-0.048	02	25 hPa	н	H	
13	12	f_0 +/-0.3222+/-0.022	02	10 hPa	н	н	
14	13	f_0 +/-0.3222+/-0.010	02	6 hPa	М н	н	
15	14	f_0 +/-0.3222+/-0.0045	H ₂ 0	3 hPa	H	Н	
16	15/16	88.2	H ₂ 0	Surface	v	v	
17	17	165.5+/-0.925	H ₂ 0	1000 hPa	Н	V	
18	20	183.31+/-7.0	H ₂ 0	12 10	Н	V	
19		183.31+/-4.5	H ₂ 0		Н		
20	19	183.31+/-3.0	H ₂ 0	800 hPa	н	H /	
21		183.31+/-1.8	H_20		Н		
-22	18	183.31+/-1.0	H ₂ 0	440 hPa	Н	н	

2 The implement of FY-3 and NPP microwave atellite data assimilation in WRFDA

1) Namelist setup

rtminit_nsensor=5,

rtminit_platform=23,23,23,23,17 # 23 for FY3 and 17 for NPP rtminit_satid=1,1,2,2,0 # 1 for FY-3A,2 for FY-3B,0 for NPP rtminit_sensor=40,41,40,41,19 # 40 for MWTS,41 for MWHS, 19 for ATMS

2) Radiance data ingest

The radiance data are named by instrument name and each file contains global brightness temperature within 6-hour assimilation window. FY3 is CMA binary format and ATMS is NCAP BUFR file. The former is not, and the latter is available through public ftp server. The naming convention is:

CMA binary file names WRF-Var naming convention fy3_yyymmddhh_mwt.dat mwtsa.dat or mwtsb.dat fy3_yyymmddhh_mwh.dat mwhsa.dat or mwhsb.dat

NCEP bufr file name atms.gdas.yyyymmddhh WRF-Var naming convention atms.bufr

2 The implement of FY-3 and NPP microwave atellite data assimilation in WRFDA

3) Other processing of radiance data including atms noise reducing, quality control, cloud detection and so on, is implemented inside WRFDA.

111/1	FY-3 MWTS/MWHS	NPP ATMS	NOAA AMSUA/MHS
Noise reducing	none	average	none
Channel selection	 MWTS 1~4 and MWHS 1~5 are not used for mixed surface; MWTS 1~3 and MWHS 1~5 are discarded for land, ice and snow; MWTS 2 and MWHS 5 are aborted when Ps<850 hPa and Ps<800 hPa, respectively. 	 All channels 1~22 are not used for mixed surface; 1~8 and 16~22 are discarded for land, ice and snow; channel 6 and 18 are aborted when Ps<850 hPa and Ps<800 hPa, respectively; 11~15 are not used. 	 AMSUA 1~15 and MHS 1~5 are not used for mixed surface; AMSUA 1~7 and MHS 1~5 are discarded for land, ice and snow; AMSUA 5 and MHS 5 are aborted when Ps<850 hPa and Ps<800 hPa, respectively; AMSUA 10~14 are not used.
Cloud detection	 1) MWTS 1 dtb, not use MWTS 1~3; 2) MWHS 1 dtb, not use MWHS 1~5. 	 channel 3 abs(dtb), not use 1~8 and 16~22; channel 1 dtb, not use 1~8 (test); scattering Insex combined channel and 17, not use 16~22 (test). 	 scattering Index combined AMSUA and 15, not use AMSUA 1~7; scattering Index combined MHS 1 and 2, not use MHS 1~5.
Outermost scan	MWTS 3~13 MWHS 9~89	1~96	AMSUA 4~27 MHS 9~82
Bias correction	VarBC	VarBC	VarBC

Note: dtb is the bias of observed and simulated brightness temperature and abs is absolute value.

MWTS channel 1

MWHS channel 1

The use of FY-3A MWTS/MWHS data and its effect on the intensity forecast error for typhoon "Fungwong" (2008)

The experiment of cloud examination scheme in the use of FY-3A microwave satellite data

ATMS and NOAA18 AMSUA/MHS observation and bias of observed and simulated brightness temperature over sea

The RMS of observed and simulated brightness temperature without and with reducing the noise to ATMS data over sea

The number of observations passing rain and cloud-related quality control over sea for ATMS and NOAA18 AMSUA/MHS

ATMS	6	7	8	18	19	20	21	22
Observation number	12123	12123	12123	12123	12054	11979	11974	11972
Passed channel 3 abs(dtb)	3710	3710	3710	3710	3710	3690	3690	3690
Passed channel 1 dtb and scattering Index combined 16 and 17	9156	9156	9156	10838	10836	10831	10831	10831
Passed all exminations	3495	3495	3495	3665	3665	3665	3665	3665
AMSUA/MHS	5	Ň	6	7	3	44	4	5
Observation number	3003	3	3003	3003	3322	2	3322	3322
Number of data passed	2940) 2	2940	2940	2919	9	2919	2919
		N. 1977.			A 7 4 191		2.20.2	1000

The RMS of observation and simulated brightness temperature

The Bias and RMS of observation and simulated brightness temperature before and after assimilation for ATMS and NOAA18 AMSUA/MHS

The impact of microwave satellite data on the typhoon "SAOLA" (2012) trace forecast (black:Control; green:ATMS; red: FY-3B; yellow: NOAA18)

The observed and simulated brightness temperature for FY-3A MWTS

The extension of RTTOV microwave particle scattering module in WRFDA

The bias (top) and RMS (bottom) of brightness temperature between clear and cloudy simulation of FY-3A MWTS/MWHS for both RTTOV and CRTM

5 Conclusion and discussion

u WRFDA has been extended to have the capability of assimilating FY-3A/B and NPP microwave satellite data. Preliminary experiments show that the use of those satellite data benefits the improvement of numerical forecast.

u Specially, there is a need to revise and investigate the cloud detective scheme in the implement of FY3 and NPP microwave satellite data because the windows channel has changed significantly compared to AMSUA/MHS. More followed experiment should be carried out with the tuning of cloud detection, together with bias correction and observation error and so on.

Additionally, RTTOV microwave particle scattering module is implemented to make the calculation under cloudy condition available by using both RTTOV and CRTM in the coincident framework of WRFDA.

