Bias-Correction of Global Climate Model Output to Improve Regional Climate Modeling of the North American Monsoon

JONATHAN MEYER¹, JIMING JIN^{1,2}, AND DAVID GOCHIS³

 UTAH STATE UNIVERSITY, DEPARTMENT OF WATERSHED SCIENCE
UTAH STATE UNIVERSITY, DEPARTMENT OF PLANTS, SOILS, AND CLIMATE
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

PURPOSE

What we know:

- Water resources in the SW U.S. are already stretched thin.
- Population in the region is expected to roughly <u>double</u> by 2050
 - Higher demand

What changes are we already seeing in water resources?

- Decreasing trend in winter snowpack in crucial headwater regions
 - Lower supply
- No major precipitation trend in the core region of the NAM (AZ, NM, Mexico), but positive trend along the northern edge of the NAM (CO, UT)

PURPOSE: WATER IS THE WORD

THE NORTH AMERICAN MONSOON

• Seasonal shift in the large-scale circulation patterns cause a dramatic change in moisture flow over the Southwest United States and most of Mexico.

THE NORTH AMERICAN MONSOON

The majority of annual moisture for the Sierra Madre Occidental in Mexico

Upwards of 50% of the annual precipitation in southern Arizona and New Mexico.

PROJECT SETUP

• Three phases

- I: Historical Calibration (1979-1999) Calibrate the model physics and obtain understanding of strengths and weaknesses of how the model resolves the NAM
- II: Historical Prediction (2000-2009) Using data independent from the bias-correction; but we still have observations to compare against.
- III: Future Prediction (2056-2065; 2090-2099) Establish trends and assess impact of global warming

WRF DESIGN

Project using WRF version 3.5, coupled with the Community Land Model (CLM) version 4.0.

Microphysics= LinLongwave Rad.= rrtmShortwave Rad.= DudhiaSurface Layer= Monin-Ob.Surface Physics= CLM4.0PBL= MYNN2.5Cumulus= BMJ

SST_update	= True
Relax_Zone	= 10

DATA SOURCES

- 1. NCEP-R1
 - Historical reanalysis (1949)
 - $-(2.5^{\circ}x2.5^{\circ})$
 - Calibrate model physics
- 2. Global Climate Model (GCM) ----- CCSMv3 [A2 scenario]
 - Historical hindcast + <u>future prediction</u>
 - (1.4°x1.4°)

*** North American Regional Reanalysis (NARR)

- 32-km

LANDMASK COMPARISON

Why do we need NARR?

SST COMPARISON

SST COMPARISON

After using NARR SST to regress CCSM SST

PRECIPITATION COMPARISON

BIAS CORRECTION

- <u>GCM Data Correction</u>
 - Previous/Current types of bias correction of GCM data have corrected each variable independently.
 - Potential for a set of variables that are **not physically possible** in the real world.
 - Winds that don't match with height fields, that don't match with temperature fields.
 - Using NCEP data, we use a simple linear regression model to remove the mean climatological bias.
 - We have developed steps to conduct bias correction, while improving on the physical consistency between variables.

BIAS CORRECTION

BOUNDARY CONDITION COMPARISON

How much better is the corrected CCSM temperature data?

	Avg. Bias		Correlation		RMSD	
	CCSM orig	CCSM reg	CCSM orig	CCSM reg	CCSM orig	CCSM reg
700-hPa	-1.23	0.22	0.71	0.67	1.7	1.1
500-hPa	-1.56	0.03	0.66	0.65	1.9	1.1
250-hPa	-2.23	0.24	0.61	0.61	2.6	1.3

BOUNDARY CONDITION COMPARISON

How much better is the corrected CCSM moisture data?

	Avg. Bias	S Corre	Correlation		RMSD	
	CCSM CCSI orig reg		CCSM reg	CCSM orig	CCSM reg	
850-hPa	-2.64 0.1	5 0.21	0.4	2.7	0.7	
700-hPa	-1.63 -0.2	2 0.34	0.59	1.7	0.6	
500-hPa	-0.03 0.0	1 0.44	0.61	0.4	0.3	
		÷				

CORRECTED CCSM PRECIPITATION COMPARISON

CORRECTED CCSM PRECIPITATION COMPARISON

SUMMARY

- When using reanalysis data, calibrated model results show WRF model physics/dynamics are able to appropriately reproduce NAM precipitation patterns and inter-annual variability for our purpose.
 - •Captures convective initiation over topography, but struggles to maintain convection through evening/night.

- •Large improvements to precipitation occur through bias correction of CCSM forcing data.
 - •Wet bias in SW U.S., but spatial pattern looks much better.

Thank You

Questions???

This work was supported by the National Science Foundation Microsystem Program Project NSFEF-1065730