

Implementing a New Shallow Convection Scheme into WRF

Aijun Deng and Brian Gaudet Penn State University

Jimy Dudhia National Center for Atmospheric Research

Kiran Alapaty United States Environmental Protection Agency

> 14th Annual WRF Users' Workshop 24 - 28 June 2013, Boulder, CO

Outline

 Overview of the PSU Shallow Convection Scheme (SCP)

• WRF Implementation Plan

• Preliminary 1-D Results

Summary and Conclusions

Technique Details of the PSU Shallow Convection Parameterization (SCP) (Deng et al. 2003a, 2003b, JAS)

- Triggering Function:
 - 1) Parcel T', Q'
 - 2) Parcel vertical lifting determined by factors including TKE
- <u>Cloud model</u>: K-F entraining/detraining cloud model
- <u>**Closure Assumption</u>**: Amount of total cloud-base mass flux or number of updrafts is determined with a hybrid of TKE and CAPE, depending on the updraft depth.</u>
- ----- In addition -----
- Prognostic cloud scheme for cloud fraction and subgrid cloud water

PSU SCP description-Parcel initial vertical velocity

 $w_B = \overline{w} + w_T + w_{NH}$

1) Resolvable-scale vertical velocity: \overline{w}

2) Boundary layer turbulence:

$$w_T = \sqrt{\frac{2}{3} \cdot TKE_{MAX}}$$

3) Vertical "pumping" due to non-hydrostatic pressure effects for deep convection:

$$w_{NH} = \max\{0.15 \cdot [w(z_{1000})^{\tau - 1} - (\overline{w} + w_T)], 0\}$$

PENNSTATE PSU SCP description- T and Q perturbation and updraft radius

Parcel perturbation in temperature and moisture, averaged from the lowest 20% of the PBL \Rightarrow Cloud base (LCL)

Updraft radius:

in a range of 150 to 1500 m, as a function of PBL depth and cloud depth:

$$R_C = \frac{b - \sqrt{b^2 - 12\eta h_{PBL}}}{4}$$

where $b = \frac{7 + 2\eta h_{PBL}}{2}$ $\eta = \frac{12D_C}{4 - D_C}$ D_C : Cloud depth (km) h_{PBL} : PBL (km)

PSU SCP description-Closure assumption

Cloud-base mass flux:

$$\mu_B = N\mu_{BS}$$
 where $\mu_{BS} = \pi R_C^2 w_B \rho$

where the number of updrafts

$$N = \begin{bmatrix} N_4 & z_T \leq z_{LFC} \\ N_2 & \text{for} & D_C \geq 4 \text{km} \\ N_3 & z_T > z_{LFC} \text{ and } D_C < 4 \text{km} \end{bmatrix}$$

where

 $N_4 = \mathcal{E} \cdot TKE_{\text{max}} \cdot N_T \quad \Rightarrow \text{TKE-based closure}$

$$N_2 = \frac{\mu_B}{\mu_{BS}} \rightarrow \text{CAPE-removal closure}$$

$$N_3 = fN_2 + (1 - f)N_4 \rightarrow$$
 Hybrid closure

 $rac{M_{\scriptscriptstyle S}}{\mu_{\scriptscriptstyle BS} au_{\scriptscriptstyle C}}$

where
$$N_T =$$

$$\varepsilon = 0.15 \text{ kg J}^2$$

$$f = h_3/h_1 \qquad h_3 = D_C - h_2$$

$$h_1 = 4 - h_2 \qquad h_2 = z_{LFC} - z_B$$

$$M_S: \text{mass of air in the model layer}$$

$$TKE_{MAX}: \text{maximum TKE below}$$

the parcel-releasing level.

PSU SCP Schematic

Schematic of the prototype PSU SCP, where *a* is the neutrally-buoyant cloud (NBC) fraction, I_c is the NBC cloud water content, I_u is the cloud water content in the updraft denoted by subscript *u*, R_{ud} is the updraft detrainment rate; and Z_{pbl} is the depth of the PBL, etc.

PENNSTATE PSU SCP description- A prognostic cloud scheme

$$\begin{aligned} \frac{\partial a}{\partial t} &= S_a + D_a - \vec{v} \cdot \nabla a - w \frac{\partial a}{\partial z} \\ \frac{\partial l_c}{\partial t} &= S_l + D_{mix} + D_{pre} + D_{ics} + D_{CTEI} - \vec{v} \cdot \nabla l_c - w \frac{\partial l_c}{\partial z} \end{aligned}$$

- *a* Cloud area
- l_c Cloud water/ice content
- S_a Source for cloud area due to updraft detrainment
- D_a Dissipation of cloud area due to evaporation at cloud edge
- S_l Source for cloud water due to updraft detrainment
- D_{mix} Depletion of cloud water due to vertical mixing
- D_{pre} Depletion of cloud water due to precipitation
- D_{ics} Depletion of cloud ice due to ice settling
- D_{CTEI} Depletion of cloud water due to CTEI

PENNSTATE PSU SCP Interaction with Radiation Schemes

Effective cloud:

 $a_e = (1-a)a_s + a$

$$a_{S} = RH^{\alpha_{1}} [1 - \exp(\frac{-\alpha_{3}(l_{c} + q_{c})}{[(1 - RH)q_{S}]^{\alpha_{2}}})] \quad \text{if RH} < 1$$

 $\alpha_1, \alpha_2, \alpha_3$ Constants given by Xu and Randall (1996)

$$R_{S} = \overline{a}_{e2}R_{2} + \overline{a}_{e3}R_{3} + (1 - \overline{a}_{e2} - \overline{a}_{e3})R_{clr}$$

Effect of PSU SCP

Marine environment Simulated sounding (20h, 40h, 60h) Without shallow convection With shallow convection

WRF DENG-SCP FLOWCHART

In addition, MM5 GS PBL scheme is implemented

PSU SCP 1-D WRF Test Cases

- Case1 Marine Shallow Stratus (Azores Islands, ASTEX)
 - 1992.06.11.06Z 1992.06.14.06Z (72-hour simulation)
 - Location: (20.0N, 24.22W)
- Case2 Continental Shallow Stratocumulus
 - 1998.06.08.12Z 1998.06.09.12Z (24-hour simulation)
 - Location: Pittsburgh, Pennsylvania
- Case3 Continental Deep Convection
 - 1997.07.10.12Z 1997.07.11.12Z (24-hour simulation)
 - Location: SGP ARM CART Site

PENNSTATE PSU SCP 1-D WRF Model Configuration

- DX=30 km, DT=90 S, 62 Eta layers
- WRF physics
 - Gayno-Seaman TKE-predicting PBL scheme (bl_pbl_physics =11) (newly implemented with the PSU SCP Scheme)
 - MM5 Monin-Obukhov scheme (sf_sfclay_physics =1)
 - 5-layer thermal diffusion scheme (sf_surface_physics =1)
 - PSU-Deng shallow convection scheme (shcu_physics 3)
 - RRTMG atmospheric radiation scheme (ra_lw_physics=4, ra_sw_physics=4)
 - WSM 3-class simple ice explicit moisture scheme (mp_physics=3)
- SCM initialization codes modified to allow pressure level sounding as in MM5

Case 1: Marine Shallow Stratus – Azores Islands, ASTEX, 06 UTC, 11-14 June 1992, 72-hour simulation

Dominated by the persistent Bermuda High, this region exhibits deep tropospheric subsidence and a moist marine atmospheric boundary layer that is often capped by a strong inversion and stratocumulus clouds, with a prescribed subsidence profile.

Initial Condition

MM5

PENNSTATE

8 5

WRF

MM5

WRF

PENNSTATE Model-predicted Number of Updrafts and Size

185

PENNSTATE

Model-predicted Cloud Fraction at 42 h

Dashed: Updraft Red Solid: Effective Cloud

Shaded: NBC Blue Solid: RH

PENNSTATE Model-predicted Cloud Water Content at 42 h

> Dashed: Updraft Heavy Solid: NBC avg. to grid

Green dotted: NBC Thin Solid: Resolved

Case 2: Continental Shallow Stratocumulus -Pittsburgh, PA: 12 UTC, 8 June 1998 -12 UTC, 9 June 1998, 24-hour simulation

Cool northwesterly winds prevailed over western PA beneath the mid-level subsidence inversion associated with the ridge, shallow cloud generation during the daytime and evening hours was dominated by the local surface fluxes.

MM5

PENNSTATE

WRF

MM5

WRF

PENNSTATE MM5 MR5 MR5 MR5 MR5 MR5

Model-predicted Cloud Fraction at 3 h

Dashed: Updraft Red Solid: Effective Cloud Shaded: NBC Blue Solid: RH

PENNSTATE Model-predicted Cloud Water Content at 3 h

> Dashed: Updraft Heavy Solid: NBC avg. to grid

Green dotted: NBC Thin Solid: Resolved

PFNNSTATE

Warm south-southeasterly flow on the west side of the high advected warm moist air from the Gulf of Mexico to the region of interest, which supported deep convection later that day.

MM5

PENNSTATE

8 5

WRF

MM5

WRF

Summary and Conclusions

- The PSU-Deng SCP scheme that was developed in MM5 is currently being implemented into the WRF modeling system, along with the PSU GS PBL scheme.
- Preliminary 1-D testing based on three convective cases showed that WRF with PSU-Deng SCP is able to reproduce the majority features of the MM5 results, including the cloud depth, fraction and cloud water.
- Future work include 1) addition of NBC advection terms, 2) extend to use with other PBL schemes, both TKE and none-TKE based; 3) 3-D evaluation; 4) comparison with existing shallow convection scheme in WRF; and 5) update and further improvement (e.g., allow more sophisticated microphysics, aerosol, tracer mixing, etc.).

Acknowledgement

• This research is supported by U. S. Environmental Protection Agency.

Supplementary Slides

PENNSTATE S work of a cloud model description- Convective-cloud sub-model

Parcel buoyancy equation used in KF scheme, except

$$\frac{dz_T}{dt} = 0.2 \cdot W_{\text{max}}$$

Shallow Conv. Scheme: KF scheme: 20-30 min. instantaneous

Source Layer:

Upper part of the PBL, a function of cloud width, Min 10 mb to Max. 60 mb when transfer to K-F scheme PENNSTATE Shallow cloud model description- Formation of NBCs

$$S_{a} = -\widetilde{w}\frac{\partial a}{\partial z} + \frac{R_{ud}}{M_{L}}$$
$$S_{l} = \left(\frac{\partial l}{\partial t} - l_{c}S_{a}\right) / a$$
where $\frac{\partial l}{\partial t} = -\widetilde{w}\frac{\partial l}{\partial t} + \frac{R_{ud}}{M_{L}}$

here
$$\frac{\partial l}{\partial t} = -\widetilde{w}\frac{\partial l}{\partial z} + \frac{R_{ud}}{M_L}l_u$$

 R_{ud} Updraft detrainment rate of (kg cloudy air/s)

- M_L Mass of air in the grid cell at a specific layer
- \widetilde{w} Convective-induced subgrid-scale subsidence
- l_u Cloud liquid/ice content in updrafts
- $l = al_c$ Grid-averaged cloud water/ice

Shallow cloud model description- Dissipation of NBCs

Dissipation by evaporation:

PENNSTATE

$$D_a = -\frac{a}{l_c} K(q_s - q)$$

K: Diffusion coefficient $(10^{-5} s^{-1})$

- q: Water vapor mixing ratio
- q_s : Saturation mixing ratio

Depletion by vertical mixing:

$$D_{mix} = \frac{1}{a} \frac{\partial}{\partial z} [(K_v + K_r) \frac{\partial (al_c)}{\partial z}]$$

- K_v : Turbulent transport coefficient determined by TKE
- K_r : Diffusion coefficient determined by cloud-top radiative forcing

PENNSTATE Shallow cloud model description- Dissipation of NBCs

Depletion by precipitation:

$$D_{pre} = -C_1 (l_c - l_{cr}) - C_2 (\rho q_r)^{0.25} l_c$$

Depletion by ice settling:

$$D_{ics} = -C_3 (\rho l_c)^{1.16} / a$$

Ice settling process when $T < 0^{\circ}C$

 l_{cr} Critical value for liquid/ice water content at which auto conversion is activated (0.5 g/kg)

ho Air density

 q_r Rain water mixing ratio

 C_1, C_2 Dimensional constants

$$C_3$$
: Dimensional constant

Depletion by CTEI:

$$D_{CTEI} = -10^{-4} \frac{r - r_{\min}}{r_{\max} - r_{\min}} l_c$$
$$r = \Delta h / L \Delta (q + l_c)$$
K

$$r_{\min} = \frac{\kappa}{\beta} \quad (\approx 0.23)$$

$$r_{\max} = \frac{(1+\gamma)[1+\kappa(1-\delta)]}{2+\gamma[1+\kappa(1+\delta)]} \quad (\approx 0.7)$$

$$\kappa = \frac{C_P T}{L}$$
$$\gamma = \frac{L}{C_P} (\frac{\partial q_S}{\partial T})_P$$
$$\beta = \frac{[1 + \gamma \kappa (1 + \delta)]}{1 + \gamma}$$
$$\delta = 0.608$$

PENN 5 simulated cloud water content (No shallow convection) 1997.04.12

18Z

21Z

PENNSTATE MIS simulated cloud fraction (with shallow convection) 1997.04.12

18Z

21Z

42

The 3-D model sensitivity to SCP. a) MM5-predicted liquid/ice water content (g kg⁻¹) of explicit cloud (scaled by 10000), at 1 km AGL at 1800 UTC 12 April 1997 in the experiment without the PSU shallow convection scheme. Contour interval is 0.005 g kg⁻¹. b) MM5-predicted fractional cloud area (%) for low clouds predicted with the PSU shallow convection scheme at the same time and height level. Contour interval is 10%. The rectangular area corresponds to the area covered by the satellite image.

MM5 north-south cross section of predicted fractional cloud area (%) versus pressure (hPa) with the PSU shallow convection scheme: a) 1500 UTC, b) 1800 UTC, c) 2100 UTC (this and the preceding from 12 April 1997), d) 0000 UTC 13 April 1997. Contour interval is 10%. Dashed curve is the MM5-predicted PBL depth.

PENNSTATE

