Diurnal Variation of Precipitation during MC3E: NASA Unified - WRF (NU-WRF) Simulations

<u>Wei-Kuo Tao¹</u>, D. Wu^{1,2}, T. Matsui^{1,3},

C. Peters-Lidard⁴, A. Hou¹, M. Rienecker⁵, W. Petersen, and M. Jensen

J. Geophys. Rev. (in press

NASA Unified WRF: NU-WRF (1) Goddard Radiation (2) Goddard Microphysics (2)

Physical Processes for Diurnal Variation of a MCS during MC3E

MC3E: Midlatitude Continental Convective Clouds Experiment NASA / DOE Joint Field Campaign

1/13 + 1 (other WRF cases)

PI: C. Peters-Lidard

Land DA: J. Santaneilo Rainfall DA: A. Hou Aerosol: M. Chin Microphy+Rad: Tao

Goddard Microphysics, Radiation, LIS and GoCART are coupled with Goddard Cumulus Ensemble (GCE) model and Goddard MMF (Tao et al. 2009)

Coupled with Goddard Satellite Data Simulator Unit (SDSU) Microphysics and Radiation are being coded in GPU

2

Goddard Radiation Packages

Goddard radiation package (original name CLIRAD) has been developed for two decades at NASA Goddard by Drs. Ming-Dah Chou and Max J. Suarez for use in general circulation models (GEOS GCM), regional model (MM5, WRF) and cloud-resolving models (GCE).

Chou M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, vol. 15, 38 pp

Chou M.-D., and M. J. Suarez, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, vol. 19, 55pp

Wavelength	SW (Solar)	LW (thermal)	
Flux solution	Two-stream adding method	Schwarzchild equation	
# of bands	UV&PAR(8 bands) Solar-IR(3 bands)	10 bands	
Optical approximation	Delta-Eddington approximation (for scattering and transmission)	Henyen-Greenstein function (for scattering), One/two-parameter scaling, modified k-distribution (for absorption)	
Optical parameters	H ₂ O, O ₂ , O ₃ , CO ₂ , condensates (cloud water, cloud ice, snow, rain, and graupel), aerosols (sulfate and precursors, dust, black carbon, organic carbon, sea salt)	H ₂ O, O ₃ , CO ₂ , trace gases (N ₂ O, CH ₄ , CFC11, CFC12, CFC22), condensates (cloud water, cloud ice, snow, rain, and graupel), aerosols (sulfate and precursors, dust, black carbon, organic carbon, sea salt),	
Accuracy	Heating rate error within 5% accuracy in comparison with a LBL model.Cooling rate error within 0.4K comparison with a LBL model.		

Differences between GEOS and CRM's radiation

- Overlap assumption: CRMs assume cloud fraction is zero or unity, while GEOS assumes cloud fraction varies from 0~1 (random or maximum overlap assumption). Thus, cloud overlapping routine and clear-sky radiative transfer are completely skipped in a CRM radiation (x2 faster).
- **Optical depths for condensates** (definition of cloud) cloud optical depth (0.0001 in CRM thin cloud) vs (0.05 in GEOS)

• Effective Radius

Ice cloud effective radius (25~125micron) depends on ambient temperature vs fixed value (80micron – GEOS) Effective radius for precipitation particles (rain, aggregate, graupel) is considered in CRM

Optimization

Used 1-dimensionalized radiative transfer to skip nighttime computation Removed redundant routines Added option (fast_overcast) that used a pre-computed look-up table for F_{cloud}/F_{clear} as a function of cloud albedo.

More than 25% computational cost even call it every 10 time steps

Lang et al. (2007, JAS) – WRF V3 \bullet

LBA Feb 23, 1999 Original Reflectivity (dbz)

240

180

TIME (min)

60

120

300

Observe

Modified

Lang et al. (2011, JAS): Reduced un-realistic 40 dBZ aloft and reduced graupel amount – Next WRF

18

14

12

10-40°

16-80*

Lang et al. (2007)

Lang et al. (2011)

Reduce the graupel, but increase both cloud ice and snow mass

Reduce the rainfall due to less melting by less graupel (not always true for CRM simulation with prescribed large-scale advective forcing)

Latent Heating Profiles aloft are quite different between these two schemes

Lang et al. (2013, JAS – 4ICE scheme) + reduction of rain evaporation (derived from spectral bin Microphysics)

Two Moments 4-ICE (2014)

R. Carbone

Rainfall and Rainfall Intensity

The diurnal variation of precipitation over central US can also be generally categorized into two different types:

- 1) afternoon rainfall maxima due to mesoscale and local circulations over the south and east of the Mississippi and Ohio valleys, and
- 2) nocturnal rainfall maxima from eastward-propagating mesoscale convective systems (MCSs) over the Lee side of Rocky Mountain regions

Diurnal Variation (April 20-June 3, 2011)

Time series of WRF modelestimated domain mean surface rainfall rate (mm h⁻¹). The observation is also shown for comparison.

The model simulated diurnal variation of rainfall captures observed well. For example, two peaks at 05 UTC and 03 UTC are simulated. Key high resolution modeling papers to study the diurnal variation of the precipitation. Model types (MM5, WRF, GCE), microphysical schemes, cumulus parameterization, domain size (km), resolution (km), initial conditions, cases and integration time (hours) are listed.

	Model	Forcing data	Physics	Domain Size	Resolution	Period
Moncrieff and Liu (2006)	MM5	Eta operational model analyses	Microphysics and Cumulus parameterization	2400 x 1800 km	3 and 10 km 40 layers	7 day simulation 3- 9 July 2003
Liu and Moncrieff (2007)	MM5	Eta operational model analyses	Different Microphysics Schemes	2400 x 1800 km	3 and 10 km 40 layers	7 day simulation 3- 9 July 2003
Surcel <i>et al.</i> (2010)	GEM	3DVAR regional Data Assimilation System	Kuo Kain and Fritsch	North America	15km 58 layers	30 h forecast Spring and Summer 2008
Clark <i>et al.</i> (2007)	WRF-NMM WRF-ARW	NAM 12km	Kain and Fritsch Ferrier	North Central US	5 km and 22km 38 layers	48 h forecast 1 April-25 July, 2005
Davis <i>et al.</i> (2003)	Eta (NCEP) WRF	Eta forecast	Kain and Fritsch Simple ice scheme	Continental United States (CONUS)	22 km	1-3 day forecast 2001 (July–August) and 2002 (June–July)
Trier <i>et al.</i> (2006)	WRF	Eta operational model analyses	Purdue - Lin	2500 x 1780 km	4 km	7 day simulation 3 - 10 July 2003
Lee <i>et al.</i> (2007)	GCE Model	DOE ARM SGP	Goddard 3-Ice scheme	128 km	1 km 41 layers	55 days Summer 1995, 1997 and 1999

The **physical processes for the diurnal variation of rainfall** over land during summer time in US, generally, are

- (1) large-scale flow including Eastward upper wind (Moncrieff and Liu, 2006; and others),
- (2) Land surface (continental thermal) forcing including thermodynamic instability within PBL (Carbone *et al.* 2002; Warner *et al.* 2002; Lee *et al.* 2007; Trier *et al.* 2006);
- (3) Successive propagating organized convection caused by convective gravity wave (Carbone *et al.* 2002; Moncrieff *et al.* 2006);
- (4) LLJ (Trier *et al.* 2006);
- (5) Diabatic heating effect (Moncrieff *et al.* 2066); and
- (6) Terrain effect (Carbone *et al.* 2002).

Model Setup (NASA Unified WRF – NU-WRF)

- Three nested domains: 18, 6, and 2 km, and 40 vertical layers.
- Physics:

Goddard Improved Microphysics Scheme (reduce un-realistic 40 dBZ aloft)

Morrison, 4ICE, 3ICE-Hail, Spectral Bin

Goddard Radiation scheme

Grell-Devenyi ensemble cumulus scheme MYJ planetary boundary layer scheme

Noah surface scheme

Goddard LIS or without LIS

Eta surface layer scheme

• Initial condition: NAM, ECMWF

RED: have done the simulations

MC3E Observed IR Bright Temperature : April 20 – June 3 2011

Strong Diurnal Variation in IR

Time-longitude diagram for **deviation of virtual potential temperature from the domain average (filled contour)**, and **hourly precipitation (over laid in black)**. From 00Z May 20th to 00Z May 22nd.

Close relationship between cool pool and rainfall Cool pool boundary is ahead of intense rainfall

	mm/hour		
Nldas	30.5		
Control	22.3		
Surface Effect	5 -10% change, no impact on phase		
No surface flux	20.7		
50% surface flux	21.6		
Radiation Effect	15% change, negative (positive) impact by		
	solar heating (longwave cooling)		
No radiation	19.9		
	Increase terrain height has better agreement		
Terrain effect	with observation, terrain is important in the		
	initial stage of diurnal variation		
No terrain	19.4		
50% terrain	19.2		
110% terrain	22.9		

13/13

References	Field Campaigns/Weather Events	Regions	
Iguchi <i>et al.</i> (2012a) Shi <i>et al.</i> (2011)	C3VP/Snow events	Canada	
Santanello et al. (2010)	IHOP/Squall line	Central USA	
Shi <i>et al.</i> (2013)	NAMMA/MCS	Africa	
Tao <i>et al.</i> (2011a, 2011b)	Hurricanes/Typhoon	South USA, Taiwan	
Iguchi et al. (2012b)	MC3E/MCS	Central USA	
Tao <i>et al.</i> (2013)			
Han <i>et al.</i> (2012)	HMT/Frontal	California	
Nicholls et al. (2013)	Cyclones	N. E. USA	
Ma <i>et al.</i> (2012)	African Easterly Waves/TCs	Africa/Eastern Atlantic Ocean	

Two real time forecasts (MC3E 20111 and IFLOOD 2013) to support NASA PMM Field campaigns

Hurricane Sandy (1 and 10 km grid, 3 and 10 day simulations)

MJO (DYNAMO)

West Coast Storms