

The Kain-Fritsch Scheme: Science Updates and Revisiting Gray–Scale Issues from the NWP and Regional Climate Perspectives

<u>Kiran Alapaty</u>¹, Russell Bullock¹, Jerold Herwehe¹, Robert Gilliam¹, Christopher Nolte¹, Tanya Otte¹, Jack Kain², and Jimy Dudhia³

¹Atmospheric Modeling and Analysis Division, U.S. Environmental Protection Agency, Research Triangle Park, NC ²National Severe Storms Laboratory, NOAA, Norman, OK ³National Center for Atmospheric Research, Boulder, CO

What: Many CP schemes (e.g., KF) do not work properly at gray-scales. i.e., dx >1 km to <10 km

Why: Many assumptions tied to scales around dx = ~25 km

How to fix: Relax some of the key assumptions towards achieving scale independence

Before we jump in, let's see what basic KF cloud process is missing?

KF cloud-radiation interactions!

Codes are submitted to NCAR for the next release

Validated for dx=108, 36, 12, and 4 km grids

2011

Now, back to the business of <u>scale</u> United States Environmental Protection Agency <u>independence</u> for KF scheme:

Lake Michigan area Old Thinking: A CP Scheme should avoid grid-scale saturation! → It squeezes too much water when applied at high resolution grids

One way to *gradually* dropout the KF is to <u>control</u> its ability to stabilize atmosphere and help to moisten the atmosphere

Adapting KF to Transition Across Grid Spacing

- Probable KF parameters that control surface precipitation & depend on grid resolution:
 - (1) Adjustment timescale (τ)
 - (2) Entrainment
 - (3) Convective cloud microphysics
- <u>Goal</u>: Make KF seamless across spatial scales (including gray scales!)

Adapting KF to Transition Across Grid Spacing: (1) Adjustment Timescale

In KF:

$$\frac{\partial \theta}{\partial t}\bigg|_{conv} = \frac{\theta_{final} - \theta_{initial}}{\tau}$$

Here τ is the time over which CAPE is "removed" to stabilize the atmosphere. τ is arbitrary in most CPS:

- KF: 0.5 1 h
- G3: ~0.75 h
- ZM: ~1 h
- AS: ~2 12 h

Timescale not connected to cloud dynamics

No scale dependency

In KF, τ decreases as resolution increases! But, τ should increase as resolution increases such that KF drops out gradually !!

Prism JJA 2006

KF Base

KF Rad + Tau

KF Rad

Adapting KF to Transition Across Grid Spacing:(2) Entrainment $\delta M_e = M_b \frac{\alpha}{P} \delta p$

Efficiency (α = <u>Tokioka parameter</u> = 0.03) (actually 0.025, *Tokioka 1988*)

<u>GCM studies</u>: Kang et al. (2009); Kim et al. (2011):

Larger α (Tokioka) \rightarrow Gridscale Precip

Then, α needs to increase as resolution increases

Min and Max numbers for Tokioka are based on GCM studies

Conv and Non-conv precip differences: end of 10th day simulation starting July 1, 2006

Adapting KF to Transition Across Grid Spacing: (3). Convective Cloud Microphysics

ON GOING WORK.... Two-moment microphysics scheme for convective clouds

Song and Zhang, 2011, J. Geophys. Res.

Opens up doors to (1) Avoid DOUBLE COUNTING of precipitation (2) Establish communication between Grid-scale and Sub-grid scale microphysics (3) Possibility of linking convection across columns Down the road: Good News to the MPAS model also !!!