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1. Introduction

The credibility of regional climate simulations over West
Africa depends on the ability to reproduce its key climatic
feature, the West African Summer Monsoon. This sea-
sonal shift in large-scale wind patterns plays a pivotal role
in every day’s life, and any modification induced by cli-
mate change and changes in land use will greatly impact
the future of this region.

To assess the impact of climate change on West Africa,
ensembles of latest global circulation models (GCMs), for
example those within CMIP5 (Covey et al. 2003), are often
used for analysis and for further statistical or dynamical
downscaling. Large-scale international collaborations such
as CORDEX (Giorgi et al. 2009) demonstrate the added
value of regional climate simulations, in particular its en-
semble information.

Yet, despite the continuous increase in spatial and tem-
poral resolution, regional climate simulations are still strug-
gling to simulate the onset, duration and geographical dis-
placement of the monsoon rain band. Severe biases are in-
troduced not only by the regional climate model itself, but
also by the driving global circulation model data (Sylla
et al. 2010). A large uncertainty in observational data
from sparse and often insufficiently-maintained observation
networks further complicates the validation of the models.
Here, we present results of two studies which are important
steps towards establishing a regional climate modeling sys-
tem for West Africa.

In Sect. 2, we report on an extensive study of model
configurations, specifically targeted to improve the West
African Monsoon representation in WRF, while in Sect. 3
we present a comparison of two bias correction methods
of global model data prior to ingesting it into WRF. Our
conclusions and a brief outlook are given in Section 4.
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2. West African Monsoon representation in WRF

WRF provides a huge number of model configurations
through the combination of parameterization schemes for
the land surface, planetary boundary layer etc. The choice
of the model physics has a strong impact on the simulation
results and has been studied extensively over continental
US, Europe and other regions of primary interest. With
respect to West Africa, only few such investigations have
been carried out (for a review, see Paeth et al. 2011), focus-
ing on short- to mid-term forecasting (Noble et al. 2014)
or considering a small number of parameterisations only
(Flaounas et al. 2011). We aim to extend this work by in-
corporating a large number of model physics combinations
and by taking the analysis to seasonal scales. Accurate
mid-term and long-term forecasts are very important for
decision makers and stakeholders, for example in the con-
text of forecasting the onset and duration of the rainy sea-
son and its projected future under the impact of climate
change. In our work, we focused on two years as exam-
ples for extreme conditions, with 1999 being considerably
wetter than the climatological average and 2002 being con-
siderably drier. In the following, we discuss the results for
1999 only.

In a first step, we focused on parameterisation schemes
which influence the moisture distribution in the atmosphere
(CU, PBL, MP) using the ERA-Interim re-analysis (Dee
et al. 2011) as forcing data. In a second step, we in-
vestigated the applicability of promising configurations for
long-term climate simulations using MPI-ESM GCM data
(Stevens et al. 2013). In total, 53 different configurations
were considered (see Table 3 in Appendix A1).

Our results confirm that the choice of model physics
strongly influences small-scale and large-scale dynamics:
While all simulations are able to represent the governing
dynamic features of the West African Monsoon (Saharan
Heat Low SHL, Tropical Easterly Jet TEJ, African East-
erly Jet AEJ, westerly winds), the intensity and position
of the monsoon rains differ significantly. We identified the
AEJ in August as a good indicator for these: In 1999
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Regional downscaling set-up: WRF24

Forcing Data ERA-Interim

Resolution 24km  

Time period Mar-Oct 1999 /2002

Vert. Layers 36  / 10 hPa

Spin-Up 1 month

External SST NCDC, daily

Other Options SST/LAI/ALB update
Adjusted lake T
MODIS Landcover

Non-varying 
physics

Noah LSM
Dudhia SW
RRTM LW

WRF24 Domain

Model configuration

Study regionFig. 1. Geographical extend of the WRF domain at 24km
resolution for the WRF sensitivity studies. The black box
marks the area used to assess the model performance.

(wet), the AEJ is located at approximately 14.2◦N in ERA-
Interim, while in 2002, it is shifted southwards to 11.2◦N.

(i) First selection using re-analysis forcing data

The WRF domain used in this study is depicted in
Fig. 1. For the wet year 1999, we found that the AEJ posi-
tion ranges from 11.5◦N to 15◦N depending on the model
physics (ERA-Interim: 14.2◦N), spanning a range from
very dry to very wet conditions (Fig. 2). We were able to
classify the parameterizations according to their favoured
monsoon regime (dry to wet), where the “extreme” schemes
tend to dictate the regime and the moderate schemes can
be pushed to either side:

• CU: BMJ < KF < GF

• MP: WSM3 < LIN < TH

• PBL: ACM2 < YSU < MYJ

We found that on seasonal scales, the choice of the PBL
scheme is the determining factor for the movement of the
rain band. This is due to its impact on the lower-level
temperature gradient, which influences the position of the
AEJ. Meanwhile, the choice of the MP scheme affects the
overall precipitation amount, i. e., it shows the same ten-
dency in the South and in the North. The choice of the CU
scheme plays a secondary role on seasonal time scales, but
is probably important for the frequency of the rain events
and on diurnal time scales.

The model configurations were evaluated against obser-
vational data from CRU (Jones and Harris 2013), TRMM

Fig. 2. Latitudinal position of the AEJ and monsoon
(westerly) wind maximum for different model configura-
tions for August 1999. The over-prediction of the westerly
winds compared to the forcing data ERA-Interim is corre-
lated with a positive bias of the 2m temperature over the
Sahara in all simulations.

(Huffman et al. 2007) and surface station data, obtained di-
rectly from the corresponding meteorological services. We
assessed statistical measures (MAE, BIAS, PCC, STD) for
precipitation, onset and duration of the monsoon, AEJ po-
sition and 2m temperature to rank the configurations ac-
cordingly (see Tab. 1).

(ii) Extension towards long-term climate simulations

Promising configurations were taken to further evalua-
tion in the second step, using ERA-Interim re-analysis and
the MPI-ESM GCM as forcing data (Table 3, configura-
tions 30–55). To be considered for a West African climate
modeling system, a model must be able to perform well for
both forcing data sets1.

The Dudhia SW and RRTM LW schemes used in step
(i) do not contain any information about the evolution of
green house gas concentrations and aerosols, an important
aspect of climate studies. In this second step, we replaced
the SW/LW schemes with CAM and RRTMG. As before,
model runs were conducted for 1999 and 2002, but only
results for 1999 are shown here.

Figure 3 displays the precipitation bias for the monsoon
season 1999 for the model runs 31, 34, 44, 47 in Table 3.
These configurations were chosen based on their good per-
formance in the first step (runs 2, 28). The best-performing
configuration in step (i), BMJ-LIN-MYJ-DUDHIA-RRTM,
now using RRMTG SW/LW, strongly overestimates the

1The MPI-ESM is close to the CMIP5 multi model mean and thus
a suitable representative for GCM data sets (e. g., Jones et al. 2012).
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Fig. 3. Precipitation bias [mm/day] averaged over the monsoon season (July–September) 1999 for two of the best-
performing configurations (#31/44 and #34/47 in Table 3), using ERA-Interim (ERA-I) and MPI-ESM (ECHAM) as
forcing data. Radiation schemes are RRMTG for LW and SW.

Table 1. Ranking of model configurations based on
runs forced with ERA-Interim for 1999 and 2002. The
default NCAR configuration (except LW/SW radiation)
ranks 17th out of the 29 initial configurations, while the
Noble et al. (2014) setup ranks 3rd.

CU MP PBL SW LW Rank

BMJ LIN MYJ DUDHIA RRTM 1
BMJ TH YSU DUDHIA RRTM 2
BMJ TH MYJ DUDHIA RRTM 2
GD WSM5 ACM2 DUDHIA RRTM 3
KF WSM3 MYJ DUDHIA RRTM 3
KF TH ACM2 DUDHIA RRTM 4
. . . . . . . . . . . . . . . . . .
KF WSM6 YSU DUDHIA RRTM 17

precipitation over land when forced with ERA-Interim, and
produces too much (too little) rain around 10◦N (15◦N)
with MPI-ESM: The monsoon rain band is not moving
far enough to the North, but rather remains stationary
around 10◦N. A similar pattern, but with a smaller sig-
nal, is found for GD-WSM5-ACM2-RRTMG-RRTMG. In
Noble et al. (2014), this configuration (with RUC instead
of NOAH LSM) was found to give the best overall per-
formance for short-term to mid-term forecasting purposes.
Likewise, we found that it is the best compromise when
both ERA-Interim and MPI-ESM forcing is considered.

3. Bias correction of global circulation model data

In the previous section, we used ERA-Interim data as
well as MPI-ESM data as lateral boundary conditions for
WRF to identify an optimal WRF model configuration for
West Africa. Albeit some limitations, ERA-Interim is sup-
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posed to represent a “perfect atmosphere”, which allows
one to estimate the bias introduced by WRF. On the other
hand, it is well known that global circulation models often
have large biases (in temperature, wind, etc.) that can im-
pose serious limitations on the validity of the results and
may sometimes render them useless (Done et al. 2012; Ro-
cheta et al. 2014). The combination of the bias inherent to
the GCM and that inherent to WRF will almost certainly
have non-linear effects on the outcome, making it difficult
to assess the accuracy of the model.

To address this issue, we implemented bias correction
techniques for the input global model data based on two
methods currently favoured by the climate modeling com-
munity (David Gochis, priv. comm.):

i. In the Colorado Headwaters project, Rasmussen et
al. (2010) use a so-called pseudo-global warming or
delta-change approach. They calculate the difference
between a ten-year period at present and a ten-year
period in the future from a GCM for each month
for temperature, humidity, geopotential height and
wind. These differences (deltas) are then added to
a current climate re-analysis to obtain a warming
signal. This approach allows one to see how “cur-
rent weather” would look like in a future climate.
(Pseudo-Global Warming method, PGW)

ii. In a climatological study of tropical cyclones, Done et
al. (2012) estimate the bias based on the average an-
nual cycle of a current climate simulation comparison
with re-analysis data and subtract out the bias fields
from the future simulated climate. This method at-
tempts to allow one to look at changes in circulation
and storm frequency patterns and changes in ther-
modynamic variables by imposing a mean bias cor-
rection. (Perturbed Average Climate method, PAC)

Both methods rely on re-analysis data as truth field (here:
ERA-Interim), which is compared to a GCM (here: MPI-
ESM). The sheer amount of data require an efficient imple-
mentation of the algorithms, which was realized by com-
bining Python with the NoSQL database Redis2. The bias
correction is performed on the output of real.exe, i. e.,
on wrfbdy_d01, wrflowinp_d01 and wrflowinp_d02 us-
ing a calibration period from 1990 to 2000, and a valida-
tion/reference period from 2000 to 2010.

A total of six WRF runs were conducted with one of the
top model configurations from the previous section (#33
in Table 3). Figure 4 displays the nested WRF domain
over the West African continent at 18 km resolution. The
six runs are (1) ERA-Interim 1990–2000, (2) ERA-Interim
2000–2010, (3) MPI-ESM 1990–2000, (4) MPI-ESM 2000–
2010, (5) Pseudo-Global Warming PGW 2000–2010, and
(6) Perturbed Average Climate PAC 2000–2010.

2http://redis.io

Domain configuration for climate simulations with WRF 
!
d1@72km: 94 x 76 x 40 grid points, 432s time step  
d2@18km: 293 x 213 x 40 grid points, 108s time step 
!
!
Required computing resources on 
FSOC Lab RX600S5 for bias correction 
 
64 Intel Xeon X7750 2.00GHz, 1Tb RAM 
4:03h (PAC) / 3:35h (PGW) runtime 
 

WRF model performance on JUROPA  
(FZ Jülich), 5x8 threads per run 
 
20min realtime (rt) per simulation day 
47500 CPUh / 51 days rt. per 10-year run 
 
Multiple model runs required  
 
ERA INT, MPI ESM, PAC, PGW
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Scientific evaluation: 10-year climate runs

18km

72km

guinea

soudano

sahel

sahelo

Fig. 4. 72 km and nested 18 km WRF domain used in the
bias correction study. Also shown is the usual classification
of West Africa into four agro-climatical zones, following a
south-north gradient in precipitation.

Table 2. 10-year mean sea surface temperature and bias
relative to ERA 2000–2009.

Model SST [K] Bias [K]

ERA 1990–1999 298.94 -0.09
ERA 2000–2009 299.03 0.00
MPI 1990–1999 299.33 0.30
MPI 2000–2009 299.53 0.50
PGW 2000–2009 299.16 0.13
PAC 2000–2009 299.15 0.12
NCDC 2000–2009 299.06 0.03

Figure 5 displays the effect of the bias correction on
the input data for the 10-year mean of the sea surface tem-
perature field SST, while Fig. 6 shows the 9-year mean of
the model output 2m temperature field T2M (to account
for the model spinup, the first year of each model run is
neglected).

Table 2 compares the bias for the input SST for the in-
ner domain d02 of the six model runs. The ERA 2000–2009
data is used as reference, since it does not enter the bias
correction methods and can be considered as the truth field
for the validation period. The NCDC3 2000–2009 mean
SST is included to allow for a further comparison with an
observational data set.

Both bias correction methods succeed in reducing the
bias of the GCM from 0.5 K to 0.13 K (PGW) and 0.12 K
(PAC), respectively. This bias is a result of an overesti-
mation of the SST change of the GCM, which increases

3NOAA National Climatic Data Center / Group for High Resolu-
tion Sea Surface Temperature GHRSST, http://www.ghrsst.org
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Fig. 5. Input mean sea surface temperature [K] for the 10-year calibration/validation period for all six forcing data sets.

Fig. 6. Output mean surface temperature [K] for the 9-year calibration/validation period for all six forcing data sets.
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by 0.2 K between the calibration and validation period, as
opposed to a 0.09 K increase in the ERA-Interim dataset.
This stronger climate change signal is added to the ERA
1990–1999 data. Since the SST field is slowly varying, the
difference between the two bias correction methods is small.

Table 4 in Appendix A2 summarizes the statistics for
the output T2M field for the inner domain d02 and for the
usual agro-climatical subregions (c. f., Fig. 4). Again, the
ERA 2001–2009 data is used as reference and the CRU
and CPC (Fan and van den Dool 2008) observational data
sets are added for further comparison. In general, all model
runs underestimate the 2m temperatures over land with re-
spect to the observational data sets, with the reference data
ERA 2001–2009 being closest, and with the uncorrected
MPI 2001–2009 having the largest negative bias. Interest-
ingly, the MPI 1991–1999 model run is close to the ERA
2000–2009 model run, while the MPI 2001–2009 model run
is consistently cooler over land.

Comparing the two ERA-Interim model runs, this cool-
ing signal between the two decades is missing and thus re-
flects itself in the statistics for the PGW/PAC runs. How-
ever, both bias correction methods improve over the raw
MPI 2001–2009 model run. The PGW (PAC) model run is
closer to the ERA-Interim (MPI-ESM) model run, which
is expected from the design of the bias correction methods.

The Pearson Correlation Coefficient is very high for
ERA 1991–1999 and MPI 1991–1999, and lowest for MPI
2001–2009 and the CRU/CPC observations. Both bias
correction methods consistently improve the correlation
with ERA 2001–2009, compared to the raw MPI 2001–2009
model run. It is worth noting the differences in mean, bias
and PCC between the two observational data sets CRU
and CPC, highlighting the great uncertainty of the obser-
vations in the data-sparse region of West Africa.

4. Conclusions and outlook

In the first part, we investigated how different WRF
model configurations influence the representation of the
West African Monsoon and the total precipitation. In prin-
cipal, all configurations were able to reproduce the seasonal
movement of the rain band. However, we found large dif-
ferences in how far it moves to the North and consequently
in the total precipitation over the West African continent.
We identified a number of model configurations suitable
for both control runs (using re-analysis data) and climate
projections (using GCM data). We also found that on sea-
sonal time scales, the choice of the cumulus scheme is less
important than the choice of the planetary boundary layer
and microphysics schemes. In a next step, we will investi-
gate how the cumulus scheme influences the diurnal cycle
and the short-term frequency of precipitation events.

In the second part, we applied two different bias cor-
rection methods to the MPI-ESM global circulation model,

using ERA-Interim re-analysis data for calibration. We
applied the bias correction, derived from the period 1990-
1999, to the following decade 2000–2009. For the input
sea surface temperature and the output 2m temperature,
both methods led to a consistent improvement over the raw
GCM data, with differences between them as expected. In
the future, we will discuss the results on precipitation and
other climate key variables and focus on the comparison
with observational data sets in addition to re-analysis data.
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APPENDIX

A1. WRF sensitivity study – model physics configurations

Table 3. Model physics configurations tested in the WRF sensitivity study. All configurations use Noah LSM.

# CU MP PBL SW SW Forcing Notes

First 27+2 experiments in step (i)
1 BMJ LIN ACM2 DUDHIA RRTM ERA-Interim
2 BMJ LIN MYJ DUDHIA RRTM ERA-Interim
3 BMJ LIN YSU DUDHIA RRTM ERA-Interim
4 BMJ TH ACM2 DUDHIA RRTM ERA-Interim
5 BMJ TH MYJ DUDHIA RRTM ERA-Interim
6 BMJ TH YSU DUDHIA RRTM ERA-Interim
7 BMJ WSM3 ACM2 DUDHIA RRTM ERA-Interim
8 BMJ WSM3 MYJ DUDHIA RRTM ERA-Interim
9 BMJ WSM3 YSU DUDHIA RRTM ERA-Interim

10 GF LIN ACM2 DUDHIA RRTM ERA-Interim
11 GF LIN MYJ DUDHIA RRTM ERA-Interim
12 GF LIN YSU DUDHIA RRTM ERA-Interim
13 GF TH ACM2 DUDHIA RRTM ERA-Interim
14 GF TH MYJ DUDHIA RRTM ERA-Interim
15 GF TH YSU DUDHIA RRTM ERA-Interim
16 GF WSM3 ACM2 DUDHIA RRTM ERA-Interim
17 GF WSM3 MYJ DUDHIA RRTM ERA-Interim
18 GF WSM3 YSU DUDHIA RRTM ERA-Interim
19 KF LIN ACM2 DUDHIA RRTM ERA-Interim
20 KF LIN MYJ DUDHIA RRTM ERA-Interim
21 KF LIN YSU DUDHIA RRTM ERA-Interim
22 KF TH ACM2 DUDHIA RRTM ERA-Interim
23 KF TH MYJ DUDHIA RRTM ERA-Interim
24 KF TH YSU DUDHIA RRTM ERA-Interim
25 KF WSM3 ACM2 DUDHIA RRTM ERA-Interim
26 KF WSM3 MYJ DUDHIA RRTM ERA-Interim
27 KF WSM3 YSU DUDHIA RRTM ERA-Interim
28 GD WSM5 ACM2 DUDHIA RRTM ERA-Interim Noble et al. (2013) (except LW/SW/LSM)
29 KF WSM6 YSU DUDHIA RRTM ERA-Interim WRF User’s Guide (except LW/SW)

Testing CAM and RRTMG radiation schemes
30 BMJ LIN MYJ CAM CAM ERA-Interim
31 BMJ LIN MYJ RRTMG RRTMG ERA-Interim
32 BMJ TH ACM2 CAM CAM ERA-Interim
33 BMJ TH ACM2 RRTMG RRTMG ERA-Interim
34 GD WSM5 ACM2 RRTMG RRTMG ERA-Interim Noble et al. (2013) (except LSM)
35 GF TH MYJ CAM CAM ERA-Interim
36 GF WSM6 MYJ CAM CAM ERA-Interim
37 KF TH MYJ CAM CAM ERA-Interim
38 KF TH YSU CAM CAM ERA-Interim
39 KF WSM6 MYJ CAM CAM ERA-Interim
40 KF WSM6 YSU CAM CAM ERA-Interim WRF User’s Guide
41 BMJ LIN MYJ RRTMG RRTM ERA-Interim Change of SW only

Testing GCM forcing data for promising configurations
43 BMJ LIN MYJ DUDHIA RRTM MPI-ESM
44 BMJ LIN MYJ RRTMG RRTMG MPI-ESM
45 BMJ LIN YSU DUDHIA RRTM MPI-ESM
46 BMJ TH ACM2 RRTMG RRTMG MPI-ESM
47 GD WSM5 ACM2 RRTMG RRTMG MPI-ESM
48 GF WSM5 ACM2 DUDHIA RRTM MPI-ESM
49 GF WSM5 ACM2 RRTMG RRTMG MPI-ESM
50 KF LIN YSU DUDHIA RRTM MPI-ESM
51 KF TH ACM2 DUDHIA RRTM MPI-ESM
52 KF WSM5 MYJ RRTMG RRTMG MPI-ESM
53 KF WSM6 YSU CAM CAM MPI-ESM WRF User’s Guide
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A2. Bias correction methods – 2m temperature output statistics

Table 4. 9-year mean 2m near surface temperature, bias and correlation with respect to ERA 2000–2009 over land, sea,
and the four agro-climatical subregions of West Africa. Two observational datasets are added for comparison.

land sea sahelo sahel soudano guinea

ERA 1990-1999 MEAN 299.64 298.24 301.23 302.36 300.73 298.17
BIAS −0.21 −0.14 −0.15 −0.13 −0.23 −0.14

PCC 0.99 0.99 0.99 0.99 0.99 0.99

ERA 2000-2009 MEAN 299.85 298.38 301.39 302.49 300.97 298.31
BIAS 0.00 0.00 0.00 0.00 0.00 0.00

PCC 1.00 1.00 1.00 1.00 1.00 1.00

MPI 1990-1999 MEAN 298.43 298.55 299.58 300.69 299.60 297.43
BIAS −1.43 0.18 −1.81 −1.79 −1.36 −0.88

PCC 0.98 0.95 0.96 0.95 0.97 0.98

MPI 2000-2009 MEAN 297.84 299.01 298.20 300.03 299.46 297.85
BIAS −2.01 0.63 −3.19 −2.46 −1.50 −0.46

PCC 0.77 0.94 0.71 0.72 0.86 0.98

PGW 2000-2009 MEAN 299.36 298.54 300.62 301.33 300.13 298.27
BIAS −0.49 0.17 −0.77 −1.16 −0.84 −0.04

PCC 0.90 0.99 0.87 0.91 0.94 0.99

PAC 2000-2009 MEAN 298.14 298.56 298.37 300.15 299.87 298.10
BIAS −1.72 0.19 −3.03 −2.34 −1.09 −0.21

PCC 0.79 0.99 0.71 0.78 0.93 0.98

CRU 2000-2009 MEAN 300.00 − 301.93 302.30 300.34 298.87
BIAS 0.15 − 0.53 −0.19 −0.63 0.56

PCC 0.91 − 0.74 0.79 0.87 0.78

CPC 2000-2009 MEAN 300.21 − 302.14 302.50 300.29 298.79
BIAS 0.36 − 0.75 0.02 −0.68 0.48
PCC 0.81 − 0.59 0.71 0.49 0.65
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