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ABSTRACT 24 

Dual-resolution (DR) hybrid variational-ensemble analysis capability was 25 

implemented within the community Weather Research and Forecasting (WRF) model 26 

data assimilation (DA) system.  The DR hybrid system combines a high-resolution (HR) 27 

background, flow-dependent background error covariances (BECs) derived from a low-28 

resolution (LR) ensemble, and observations to produce a deterministic HR analysis.  As 29 

DR systems do not require a HR ensemble, they are computationally cheaper than a 30 

single-resolution (SR) hybrid configuration, where both the background and ensemble 31 

have equal resolutions. 32 

Single-observation tests were performed to document some characteristics of DR 33 

hybrid analyses.  Additionally, the DR hybrid system was evaluated in a continuously 34 

cycling framework, where a new DR hybrid analysis was produced every 6-hrs over a 35 

~3.5 week period.  In our DR configuration, the deterministic backgrounds and analyses 36 

had 15-km horizontal grid spacing, but the 32-member WRF-based ensemble providing 37 

flow-dependent BECs for the hybrid had 45-km horizontal grid spacing.  The DR hybrid 38 

analyses initialized 72-hr WRF model forecasts that were compared to forecasts 39 

initialized by a SR hybrid system where both the ensemble and background had 15-km 40 

horizontal grid spacing.  The SR and DR hybrid systems were coupled to an ensemble 41 

adjustment Kalman filter (EAKF) that updated the ensembles each DA cycle.  42 

  On average, forecasts initialized from 15-km DR hybrid analyses performed 43 

similarly as those initialized by 15-km SR hybrid analyses.  These results suggest that 44 

using LR ensemble BECs in combination with a HR background is justifiable, which 45 

permits considerable computational savings. 46 
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1.  Introduction 47 

Ensemble-based data assimilation (DA) methods, such as the ensemble Kalman 48 

filter (EnKF; Evensen 1994; Burgers et al. 1998; Houtekamer and Mitchell 1998), have 49 

become popular alternatives to traditional variational DA approaches.  EnKFs use short-50 

term ensemble forecasts to calculate flow-dependent, multivariate background error 51 

covariances (BECs), contrasting the static, isotropic BECs typically employed in three-52 

dimensional variational (3DVAR; e.g., Barker et al. 2004) DA.   53 

Flow-dependent BECs can also be introduced into DA systems without an EnKF.  54 

Specifically, ensemble-derived BECs can be incorporated within a variational framework 55 

in a “hybrid” variational-ensemble DA algorithm (e.g., Hamill and Snyder 2000; Lorenc 56 

2003; Buehner 2005; Wang et al. 2008a; Zhang et al. 2009; Wang 2010; Clayton et al. 57 

2012; Kuhl et al. 2013).  Moreover, hybrid paradigms permit flexibility regarding how 58 

much the total BECs are weighted toward ensemble and static (i.e., 3DVAR) 59 

contributions.  Although hybrid analyses are deterministic, since an ensemble is required 60 

to provide flow-dependent BECs, hybrid systems are often coupled with EnKFs that 61 

update the ensemble each DA cycle (e.g., Wang et al. 2008a,b; Hamill et al. 2011; Wang 62 

2011; Zhang and Zhang 2012; Gao et al. 2013; Schwartz et al. 2013; Wang et al. 2013; 63 

Zhang et al. 2013; Pan et al. 2014; Schwartz and Liu 2014).  64 

The hybrid method has shown great promise for initializing numerical weather 65 

prediction (NWP) model forecasts.  It has been demonstrated that hybrid approaches 66 

typically initialize comparable or better forecasts than purely variational methods that do 67 

not incorporate ensemble BECs and can outperform forecasts initialized by standalone 68 

EnKFs (e.g., Buehner 2005; Wang et al. 2008b; Buehner et al. 2010; Hamill et al. 2011; 69 
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Wang 2011; Li et al. 2012; Zhang and Zhang 2012; Wang et al. 2013; Zhang et al. 2013; 70 

Schwartz et al. 2013; Pan et al. 2014; Schwartz and Liu 2014).  Additionally, the hybrid 71 

technique can be easily implemented in pre-existing variational DA systems and may 72 

produce similar results as EnKFs but with a smaller ensemble (e.g., Wang et al. 2007a, 73 

Zhang et al. 2013; Pan et al. 2014).  Moreover, as the hybrid employs model-space 74 

covariance localization, assimilation of non-local observations, such as satellite 75 

radiances, may be more effective in hybrid frameworks than in EnKFs that use 76 

observation-space localization (Campbell et al. 2010).  Given these attractive features and 77 

successful hybrid-initialized forecasts, the National Centers for Environmental Prediction 78 

(NCEP) Global Forecast System (GFS) model is now initialized with a hybrid-3DVAR 79 

system (Wang et al. 2013) and the United Kingdom Met Office uses a four-dimensional 80 

variational (4DVAR; e.g., Courtier et al. 1994) hybrid to initialize their global model 81 

(Clayton et al. 2012). 82 

 Many studies have described limited-area hybrid systems that employ a “single 83 

resolution” (SR) configuration, where the ensemble providing flow-dependent BECs has 84 

the same resolution as the deterministic background and analysis (e.g., Wang et al. 85 

2008b; Wang 2011; Li et al. 2012; Zhang and Zhang 2012; Zhang et al. 2013; Schwartz 86 

et al. 2013; Schwartz and Liu 2014; Pan et al. 2014).  However, a “dual-resolution” (DR) 87 

hybrid analysis can be produced that combines a high-resolution (HR) background with a 88 

low-resolution (LR) ensemble to produce a HR analysis, obviating the need for a costly 89 

HR ensemble.  As the most expensive component of ensemble DA systems involves 90 

advancing an ensemble of forecasts between analyses, if hybrid analyses using flow-91 

dependent BECs provided by a LR ensemble can initialize forecasts with comparable 92 
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quality as those initialized by hybrid analyses that ingest HR perturbations, considerable 93 

computational savings can be realized.  Given these savings—and out of practical 94 

necessity—several global hybrid DA configurations have employed DR approaches (e.g., 95 

Buehner et al. 2010; Hamill et al. 2011; Clayton et al. 2012; Kuhl et al. 2013), including 96 

the operational NCEP GFS 3DVAR-hybrid system (as noted in Wang et al. 2013). 97 

We note that use of multiple resolutions within DA systems is not confined to 98 

hybrid methods.  Multiple resolutions are commonly employed in incremental 4DVAR 99 

(Courtier et al. 1994) systems, where a HR nonlinear model is used to calculate 100 

innovations based on a HR guess field and define a trajectory about which LR tangent 101 

linear and adjoint models are formulated.  Moreover, Gao and Xue (2008) described an 102 

ensemble DA system that updated a deterministic HR background using BECs derived 103 

from a LR ensemble.  The HR forecast evolved independently of the LR ensemble and 104 

BECs calculated in LR space were used to update both the HR background and LR 105 

ensemble members.  Gao and Xue (2008) reported encouraging results using this 106 

approach and noted that it afforded large computational savings compared to employing a 107 

SR DA system.  Additionally, Rainwater and Hunt (2013) discussed the merits of a DR 108 

EnKF where the ensemble was a mixture of HR and LR members.   109 

However, Gao and Xue (2008) assimilated simulated radar observations in an 110 

idealized case study of a supercell and Rainwater and Hunt (2013) assimilated synthetic 111 

observations with a simple, idealized model.  Thus, investigations regarding DR and SR 112 

applications for ensemble DA systems are needed for real-data cases.  Moreover, the 113 

performance of DR versus SR hybrid analysis/forecast systems has not been thoroughly 114 

documented for either global or regional applications. 115 
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This paper describes the implementation of a DR hybrid analysis system within 116 

the community Weather Research and Forecasting (WRF; Skamarock et al. 2008) model 117 

DA system (WRFDA; Barker et al. 2012) that is designed for limited-area modeling 118 

applications.  We describe the DR hybrid formulation and present single-observation tests 119 

to understand basic properties of DR analyses.  Additionally, we assimilate real 120 

observations with a DR hybrid system that combined a 15-km background and a 45-km 121 

ensemble in a continuously cycling configuration over a ~3.5 week period.  The DR 122 

analyses initialized 72-hr WRF model forecasts over southeast Asia.  Similarly-123 

configured 15-km SR hybrid analyses and forecasts were also generated and compared to 124 

those produced by the DR system.  The DR and SR hybrid systems were coupled to an 125 

ensemble adjustment Kalman filter (EAKF; Anderson 2001, 2003) from the Data 126 

Assimilation Research Testbed (DART; Anderson et al. 2009) software that updated the 127 

ensemble each DA cycle.  This work also extends that of Schwartz et al. (2013; hereafter 128 

S13), who examined 45-km 3DVAR and SR hybrid analysis/forecast systems over the 129 

same region and time period. 130 

  Section 2 describes the DR hybrid algorithm and its practical implementation, 131 

while section 3 details the WRF configurations and DA settings.  The experimental 132 

design is presented in section 4 and section 5 briefly discusses the observations.  Results 133 

regarding single-observation experiments are described in section 6, section 7 examines 134 

analyses and forecasts produced by continuously cycling DR and SR hybrid systems that 135 

assimilated real observations, and we conclude in section 8. 136 

 137 

 138 
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2.  The WRFDA dual-resolution hybrid system 139 

a.  Mathematical formulation 140 

WRFDA’s hybrid algorithm (Wang et al. 2008a) is an extension of its 3DVAR 141 

formulation (Barker et al. 2004).  Thus, our description of the DR hybrid starts with the 142 

3DVAR cost-function.  For simplicity, we consider the formulation for a single outer-143 

loop (OL; Courtier et al. 1994) analysis, which is sufficient to illustrate implementation 144 

of the DR hybrid.  145 

In 3DVAR, a best-fit analysis is calculated considering observations and a 146 

background field, typically a short-term model forecast.  Associated with the background 147 

and observations are their error characteristics.  Given the background, observations, and 148 

errors, the 3DVAR analysis vector (x) can be determined by iteratively minimizing a 149 

scalar cost-function (J) given by   150 

J(x) =
1

2
(x − xb )

T
B

−1
(x − xb )+

1

2
[H (x)− y]

T
R

−1
[H (x)− y] ,            (1) 151 

where xb denotes the background vector, y is a vector of observations, and H is the 152 

potentially non-linear “observation operator” that interpolates grid point values to 153 

observation locations and transforms model-predicted variables to observed quantities.  154 

Matrices B and R contain the background and observation error covariances, 155 

respectively.  By linearizing H(x) about xb, Eq. (1) can be written in “incremental form” 156 

(Courtier et al. 1994) as 157 

J(δx) =
1

2
(δx)

T
B

−1
(δx)+

1

2
(Hδx − y ')

T
R

−1
(Hδx − y ') ,     (2) 158 

where δx = x – xb is the analysis increment vector, y '  = y – H(xb
 
) is the innovation 159 

vector, and matrix H is the linearized version of H.   160 
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In Eq. (2), δx is a vector of length n, consisting of WRFDA’s five control 161 

variables: stream function, pseudo relative humidity, and unbalanced velocity potential, 162 

temperature, and surface pressure (Barker et al. 2004).  To produce hybrid analyses, 163 

BECs from an N-member ensemble are incorporated into the cost function using the 164 

extended control variable approach (Lorenc 2003; Wang et al. 2008a).  First, the total 165 

analysis increment is partitioned as  166 

δx = x
1
+ a

i
o x

i
'

i=1

N

∑ ,      (3) 167 

where x1 is the n-dimensional analysis increment vector associated with the static BECs 168 

(i.e., 3DVAR) and the second term on the right hand side (RHS) of Eq. (3) is the 169 

increment associated with the ensemble BECs.  The vector x
i
'  is the perturbation of the 170 

ith prior (before assimilation) ensemble member about the prior ensemble mean 171 

normalized by (N-1)
1/2

, vector ai is a control variable (Lorenc 2003) that determines 172 

weighting for the ensemble perturbations, and the symbol ° denotes a Schur product 173 

(element by element multiplication).   174 

 Each x
i
'  is a vector of length nl, where nl ≤ n.  Necessarily, each ai is also a 175 

vector of length nl.  In a SR hybrid system, nl = n and the ensemble and background are at 176 

identical resolutions.  But, in a DR hybrid system, nl < n, meaning the ensemble is at 177 

coarser resolution than the background.  Therefore, DR hybrid analyses have fewer 178 

extended control variables (i.e., a) than SR hybrid analyses. 179 

Following Wang (2010), we define nl x nl matrix di = diag(x
i
' ), where diag is an 180 

operator that converts vector x
i
'  into diagonal matrix di, whose pth diagonal element is 181 
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the pth element of xi ' .  Further, let D be the nl x (Nnl) matrix defined as D = [d1 d2 d3 … 182 

dN], and concatenate each ai to form vector a of length (Nnl): 183 

a =

a
1

a
2

a
3

M

a
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.      (4) 184 

Then, 185 

δx = x1 + Da .     (5). 186 

Eqs. (3) and (5) are identical, but Eq. (5) is simpler because it does not contain 187 

summations or Schur products.  When the ensemble and background are at the same 188 

resolution (SR hybrid), Eq. (5) is valid since nl = n and both terms on the RHS of Eq. (5) 189 

are n-dimensional vectors.  However, if nl < n, as in a DR application, Eq. (5) is invalid 190 

since the two terms on the RHS side of Eq. (5) are vectors of different lengths.  Thus, for 191 

DR applications, interpolation of one term is needed.  Since we wish to produce a HR 192 

analysis, we introduce an interpolation operator L to interpolate the quantity Da from LR 193 

to HR space.   194 

Strictly, L is an n x nl matrix, where each row of L specifies how a single HR grid 195 

point is related to each LR grid point.  While theoretically, L could be any interpolation 196 

method, we defined L as the same bilinear interpolation operator used to interpolate the 197 

model state to observation locations in H to make use of existing code in WRFDA. 198 

Introducing L into Eq. (5) gives 199 

δx = x1 + LDa .    (6). 200 
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For a SR application (nl = n), L = I, the identity matrix, and Eq. (5) is recovered.  Thus, 201 

Eq. (6) is a general expression for the total increment since it is valid even if n ≠ nl. 202 

 The corresponding cost function that is minimized with respect to x1 and a to 203 

obtain the hybrid analysis increment is 204 

J(x
1
,a) = β

1

1

2
(x

1
)
TB−1

(x
1
)

+β
2

1

2
(a)TA−1a

+
1

2
(Hδx − y ')TR−1(Hδx − y ')

,           (7)  205 

where δx is given by Eq. (6), and A is an (Nnl) x (Nnl) block diagonal matrix that controls 206 

the spatial correlation of a, effectively performing localization of the ensemble BECs 207 

(Wang et al. 2007b).  Note that A is in the ensemble space, while B is in the space of the 208 

background.  Moreover, A is typically defined with long localization length scales, which 209 

constrains a to be spatially smooth (e.g., Wang 2010) and motivates the potential for 210 

successful DR hybrid systems.  The terms β1 and β2 determine how much weight is given 211 

to the ensemble and static BECs and are constrained such that  212 

1

β
1

+
1

β
2

= 1.       (8) 213 

Eq. (7) is minimized by taking its gradient with respect to x1 and a and equating 214 

with zero, which yields 215 

∇
x1
J = β

1
B

−1
x
1
+H

T
R

−1
(Hδx − y ') = 0    (9) 216 

and 217 

∇aJ = β
2
A

−1
a +D

T
L
T
H
T
R

−1
(Hδx − y ') = 0 .    (10) 218 

In Eq. (10), L
T
 is the adjoint of L, which transforms H

T
R

-1
(Hδx- y ' ) from HR to 219 

LR space.  Within the context of variational minimization, for DR hybrid applications, 220 
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each iteration, L
T
 is applied to H

T
R

-1
(Hδx- y ' ) and L is applied to Da.  It is unclear how 221 

much representativeness error is introduced by interpolating quantities from LR to HR 222 

(and vice-versa) each iteration, although representativeness errors should increase as the 223 

ratio of LR to HR horizontal grid spacing increases.  However, since the interpolated 224 

quantities are the ensemble contribution to the increment (Da) and the adjoint vector 225 

[H
T
R

-1
(Hδx- y ' )], which are spatially smooth compared to xb, these representativeness 226 

errors may be somewhat diminished.   227 

 228 

b.  Practical considerations  229 

 WRFDA can perform DR hybrid analyses for any valid nested configuration of 230 

the WRF model, offering users great flexibility to produce HR analyses over a domain of 231 

interest without the need for an expensive HR ensemble.  To produce a DR analysis, a 232 

valid nested WRF domain is created, with a HR “child” grid nested within a LR “parent” 233 

grid (Fig. 1).  WRF model fields on the HR grid provide the background for a DR 234 

analysis, while the ensemble BECs are provided using ensemble fields on the parent grid. 235 

WRFDA uses solely the portion of the LR parent grid co-located with the HR child grid 236 

to compute the ensemble-derived BECs for a DR analysis.   237 

Currently, the parent domain can only provide ensemble BECs for a child domain 238 

nested one level down.  Thus, the 45-km domain (d01) in Fig. 1a can directly provide 239 

ensemble BECs for a 15-km (d02) hybrid analysis but not for a 5-km (d03) hybrid 240 

analysis.  However, an ensemble on the 15-km grid (d02) could provide BECs for a 5-km 241 

(d03) hybrid analysis.  Additionally, WRFDA can only produce an analysis for one 242 

domain at a time.  Thus, for a nested configuration where the parent has two children 243 
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(Fig. 1b), while the 45-km domain (d01) can provide the ensemble BECs for hybrid 244 

analyses on both the 15-km (d02) and 5-km (d03) domains, WRFDA must be run twice. 245 

The DR analysis does not update any field on the parent grid.  So, if a hybrid 246 

analysis on the LR parent grid is desired, a LR ensemble and deterministic background 247 

must be available.  Furthermore, if an ensemble is available on the child grid, a SR hybrid 248 

analysis can be performed on the HR grid.  The remainder of this paper focuses on results 249 

produced by various hybrid systems that employ both DR and SR configurations. 250 

 251 

3.  WRF model and data assimilation configurations 252 

 The WRF model and DA configurations were very similar to those in S13.  Thus, 253 

generally brief descriptions follow. 254 

 255 

a.  Forecast model 256 

Weather forecasts were produced by version 3.3.1 of the non-hydrostatic 257 

Advanced Research WRF (Skamarock et al. 2008) model.  All experiments ran over a 258 

one-way nested computational domain encompassing the western Pacific Ocean and 259 

eastern Asia (Fig. 2).  The horizontal grid spacing was 45-km (222 x 128 grid points) in 260 

the outer domain and 15-km (316 x 274 grid boxes) in the inner nest.  Both domains were 261 

configured with 45 vertical levels and a 30 hPa top.  The time step was 180 seconds in 262 

the 45-km domain and 60 seconds in the 15-km nest.  GFS forecasts provided lateral 263 

boundary condition (LBC) forcing for the 45-km domain every 6-hrs and the 45-km 264 

domain provided LBCs for the 15-km nest.  The same physical parameterizations as in 265 

S13 were used in both domains and are listed in Table 1. 266 
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 267 

b.  EAKF and hybrid data assimilation settings     268 

The hybrid uses an ensemble of short-term forecasts to incorporate flow-269 

dependent BECs in the variational cost-function [i.e., Eq. (7)] and the ensemble needs to 270 

be updated when new observations are available.  The EAKF from the DART was used 271 

to update a 32-member WRF-based ensemble.  To reduce spurious correlations due to 272 

sampling error, localization forced EAKF analysis increments to zero ~1280-km from an 273 

observation in the horizontal and ~10-km in the vertical.  Adaptive inflation (Anderson 274 

2009) was applied immediately before prior model-simulated observations were 275 

computed to maintain ensemble spread.  A stochastic kinetic-energy backscatter scheme 276 

(Shutts 2005; Berner et al. 2009) was applied during the WRF model advances between 277 

each EAKF analysis to further preserve spread.  278 

Localization was also applied in the hybrid to limit the spatial extent of the 279 

ensemble contribution to the analysis increments.  Horizontal localization of 280 

approximately the same length-scale in DART was applied in the hybrid.  Vertical 281 

localization length-scales in the hybrid increased with height (see S13 for more 282 

information). 283 

Static 45- and 15-km BECs used in the hybrid algorithm were constructed using 284 

the “NMC Method” (Parrish and Derber 1992) from WRF forecasts produced over this 285 

domain for multiple months and used operationally by the Taiwan Central Weather 286 

Bureau (CWB), as described by S13.  Three OLs were used in the hybrid minimization.  287 

As in S13, hybrid BECs were weighted 75% toward the ensemble contribution and 25% 288 

toward the static (i.e., 3DVAR) component.  We also weighted the BECs equally 289 
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between the ensemble and static contributions and achieved similar results.  Limited 290 

sensitivity to BEC weightings in SR hybrid configurations has also been noted elsewhere 291 

(e.g., Wang 2011; Wang et al. 2013; Zhang et al. 2013), but Wang et al. (2013) stated that 292 

in preliminary testing, forecasts were improved in a global DR hybrid-3DVAR system 293 

when the total BECs were weighted equally between the static and ensemble 294 

contributions compared to when ensemble BECs provided the total BECs (i.e., no static 295 

contribution). 296 

 297 

4.  Experimental design 298 

  Three experiments were designed to investigate the performance of DR and SR 299 

hybrid analysis/forecast systems.  All experiments began at 0000 UTC 4 September by 300 

interpolating the deterministic 0.5 x 0.5 degree NCEP GFS analysis onto the nested 301 

computational domain (Fig. 2).  The initial 45-km ensemble was constructed at this time 302 

by taking Gaussian random draws with zero mean and static BECs (Barker 2005; Torn et 303 

al. 2006) and adding them to the GFS field.  LBCs for the ensemble system were 304 

perturbed similarly.  The initial 15-km ensemble was produced by downscaling the 305 

perturbed 45-km fields onto the 15-km grid, similar to Ha and Snyder (2014). 306 

The deterministic and ensemble fields produced at 0000 UTC 4 September 307 

initialized 6-hr WRF forecasts which served as backgrounds for the first hybrid and 308 

EAKF analyses at 0600 UTC 4 September.  Thereafter, the EAKF and hybrid 309 

configurations cycled continuously until 0000 UTC 28 September, and a new analysis 310 

was produced every 6-hrs.  The background for DA was always the previous cycle’s 6-hr 311 

forecast.  Nested 45-/15-km 72-hr WRF model forecasts were initialized every 6-hrs from 312 
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hybrid analyses between 1800 UTC 8 and 0000 UTC 28 September (inclusive; 78 total 313 

forecasts).  Identical to S13, digital filter initialization (DFI; Lynch and Huang 1992, 314 

Huang and Lynch 1993) using a twice-DFI scheme and the Dolph filter (Lynch 1997) 315 

with a 2-hr backwards integration was applied to all 72-hr forecasts, but not during the 6-316 

hr cycling between analyses.  S13 examined this same period and employed an identical 317 

experimental design, but they only produced 45-km SR hybrid analyses. 318 

Although DART can update multiple WRF domains in one step (e.g., Ha and 319 

Snyder 2014), if multiple domains are simultaneously analyzed, analysis variables from 320 

one domain may impact analysis variables in another.  We wanted to keep the 45- and 321 

15-km ensemble systems separate to cleanly isolate sensitivity of using HR and LR 322 

perturbations in hybrid analyses, so, when 15-km EAKF analyses were required, the 323 

EAKF produced separate, independent 45- and 15-km analyses.   324 

The 45- and 15-km prior ensembles produced by cycling EAKF-WRF systems 325 

were used as input to hybrid analyses.  Like the EAKF, all hybrid experiments produced 326 

separate, independent 45- and 15-km analyses.  The three hybrid experiments differed by 327 

the resolution of the ensemble perturbations ingested by the 15-km hybrid analyses 328 

(which determined whether 15-km EAKF analyses and ensemble forecasts were needed) 329 

and whether the EAKF analysis ensemble was re-centered about the hybrid analysis (e.g., 330 

Zhang et al. 2013; Wang et al. 2013; Pan et al. 2014): 331 

1) “Hybrid_SR” : Separate, independent SR 45- and 15-km hybrid analyses were 332 

produced each DA cycle.  The 45-km hybrid analyses incorporated BECs from the 333 

cycling 45-km EAKF-WRF ensemble system, while the 15-km hybrid analyses used 334 

BECs from the cycling 15-km EAKF-WRF ensemble system.  Since 15-km ensembles 335 
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were needed for the 15-km SR hybrid, each ensemble member was advanced between 336 

analysis cycles with the 15-km nest embedded within the 45-km domain.  EAKF analysis 337 

ensembles were not re-centered about hybrid analyses.  Due to the necessity of 15-km 338 

ensembles, this experiment was the most computationally expensive.  This experiment’s 339 

procedure is illustrated in Fig. 3.   340 

2) “Hybrid_DR_1way” : 45-km hybrid analyses were produced as in Hybrid_SR, 341 

but ensemble BECs for 15-km hybrid analyses were provided by 45-km prior ensembles.  342 

Thus, the same 45-km ensembles provided BECs for 45-km SR hybrid analyses and 15-343 

km DR hybrid analyses.  Since 15-km ensembles were not required, the EAKF-WRF 344 

ensemble system performed solely 45-km analyses, allowing removal of the 15-km nest 345 

during the ensemble of WRF model advances between EAKF analyses, enabling 346 

considerable savings compared to Hybrid_SR.  EAKF analysis ensembles were not re-347 

centered about hybrid analyses.  Omission of the re-centering step in Fig. 4 yields this 348 

experiment’s methodology.  Since the 45- and 15-km hybrid analyses were independent 349 

and there was no EAKF re-centering, the 45-km analyses and forecasts were identical to 350 

the 45-km fields produced in Hybrid_SR. 351 

3) “Hybrid_DR_2way” : Identical to Hybrid_DR_1way, except the 45-km EAKF 352 

analysis ensembles were re-centered about hybrid analyses.  Again, 15-km ensembles 353 

were not needed, so the EAKF-WRF ensemble system ran solely at 45-km grid spacing.  354 

To perform re-centering, first, the 15-km hybrid analyses were upscaled to 45-km and 355 

replaced the 45-km hybrid analyses over the 45-km geographic region co-located with the 356 

15-km grid.  Then, each 45-km EAKF analysis ensemble member was re-centered about 357 

the 45-km hybrid analysis that contained the upscaled 15-km hybrid analysis information.  358 
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Figure 4 exactly depicts this experiment’s procedure.  The cost of re-centering was nearly 359 

negligible, and this experiment had a similar cost as Hybrid_DR_1way.  360 

Comparison of Hybrid_SR with Hybrid_DR_1way cleanly assesses sensitivity to 361 

the resolution of the ensemble perturbations, while comparing Hybrid_DR_1way with 362 

Hybrid_DR_2way isolates whether re-centering benefits DR hybrid systems.  Wang et al. 363 

(2013) and Pan et al. (2014) noted little practical difference between SR hybrid systems 364 

with and without re-centering steps.  Additionally, S13 performed 45-km SR hybrid 365 

analyses for this period and domain and noted little sensitivity to whether re-centering 366 

occurred, so, here, SR analyses with EAKF re-centering were not performed.  We can 367 

also compare the 45- and 15-km Hybrid_SR analyses and forecasts to determine the 368 

benefit of HR analyses and forecasts.   369 

Results from these experiments are presented in section 7. 370 

 371 

5.  Observations 372 

As in S13, the WRFDA-hybrid and EAKF systems assimilated different 373 

observations, as summarized in Table 2.  Observations taken within ± 3-hrs of each 374 

analysis time were assimilated and observations were assumed to be valid at the analysis 375 

time.  A typical distribution of observations available for assimilation at 0000 UTC is 376 

shown in Fig. 2.  At this time, bogus tropical cyclone (TC) observations produced as in 377 

Hsiao et al. (2010) were distributed around typhoon Sinlaku, and a similar spatial 378 

distribution of TC bogus observations was used for other TCs.  Analyses in both domains 379 

only assimilated observations located within their bounds, meaning the 15-km analyses 380 

assimilated fewer observations than the 45-km analyses. 381 
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All observations were subject to various forms of quality control as in S13.  382 

Observations above the model top were excluded from assimilation and at stations where 383 

multiple observations were received during the ± 3-hr time-window, only the observation 384 

nearest the analysis time was kept.  Additionally, “outlier checks” were applied.  In the 385 

hybrid, an observation was not assimilated if its innovation exceeded 5σo, where σo is the 386 

observation error standard deviation.  As in S13, a different outlier check was applied in 387 

DART compared to that in the hybrid to account for ensemble spread.  Specifically, the 388 

EAKF did not assimilate an observation if the ensemble mean innovation was greater 389 

than three times the square root of the sum of σo
2
 and σf

2
, where σf

2
 is the ensemble 390 

variance of the simulated observation. 391 

 392 

6.  Results: single-observation experiments 393 

To understand hybrid analysis sensitivity to the resolution of ensemble 394 

perturbations, two separate sets of hybrid analyses were performed where solely a single 395 

observation was assimilated.  The two sets differed by the location of the observation—396 

one was placed within a strong typhoon and the other in nondescript westerly flow.  397 

Within each set, SR and DR hybrid analyses were performed that differed by the 398 

resolution of the ensemble perturbations.  The SR analyses used the 15-km ensemble 399 

produced in Hybrid_SR to provide BECs whereas the DR analyses used BECs provided 400 

by the 45-km ensemble produced in Hybrid_DR_1way.  To ensure that analysis 401 

differences were solely attributable to the different ensembles, the background for all 402 

experiments was the 15-km Hybrid_DR_1way background valid at 0000 UTC 12 403 

September.  Further, to maximize potential analysis differences, BECs for all single-404 
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observations experiments were provided entirely from the ensemble (no static B 405 

contribution).   406 

 407 

a.  Single observation in typhoon core 408 

A single 500 hPa temperature observation placed near the center of typhoon 409 

Sinlaku that was 2 K colder than the background (i.e., innovation of -2 K) with an error 410 

standard deviation of 1 K was assimilated.  There were many differences between the 15-411 

km SR and DR increments.  For example, the SR hybrid 500 hPa potential temperature 412 

(θ) increments (Fig. 5a) were more negative near the observation than the DR hybrid 413 

analysis increments (Fig. 5b), indicating the SR analysis more closely fit the observation.  414 

Additionally, while both increments were positive west of the observation, northeast of 415 

Taiwan, the DR increments were slightly negative or neutral while the SR increments 416 

were positive.  Furthermore, the DR analysis had a greater area of negative increments 417 

north and east of the observation.  Everywhere, the SR increments had more fine-scale 418 

detail than the DR increments, and the circulation around Sinlaku was more prominent in 419 

the SR increments. 420 

Similarly, near the observation location, the 15-km 500 hPa water vapor mixing 421 

ratio increments (Fig. 6a,b) were larger in the SR analysis.  While the DR and SR 422 

moisture increments were broadly similar west of ~123°E, there were substantial 423 

differences near and east of the observation.  Specifically, the DR increments were more 424 

negative immediately west of the observation, and the SR and DR increments had 425 

opposite signs at many locations east of ~125°E.  Both increments clearly captured the 426 

circulation around the typhoon, illustrating the incorporation of flow-dependent BECs in 427 
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the hybrid, but the SR increments featured more banded structures and greater detail than 428 

the DR increments. 429 

Those disparities between the SR and DR hybrid increments can largely be 430 

explained by differences regarding the 45- and 15-km ensembles that provided the BECs 431 

for the analyses.  Figures 5c,d show the 15- and 45-km ensemble standard deviations of 432 

500 hPa θ at 0000 UTC 12 September overlaid with the ensemble mean 500 hPa height.  433 

The 15-km ensemble had a stronger TC than the 45-km ensemble, consistent with the 434 

expectation that HR models can better resolve strong TCs than LR models (e.g., Xue et 435 

al. 2013).  Near the observation, the 15-km ensemble had larger θ spread than the 45-km 436 

ensemble, which permitted the SR analysis greater freedom to adjust toward the 437 

observation than the DR analysis.  The 15-km ensemble θ spread was organized into 438 

bands associated with the TC, while the 45-km ensemble θ spread had less-coherent 439 

spiraling structures.  However, the 45-km 500 hPa ensemble water vapor mixing ratio 440 

spread more clearly reflected the TC, but the 15-km spread again had more banding (Fig. 441 

6c,d).  Overall, the SR and DR increments usually reflected the ensemble spreads, as the 442 

largest increments often corresponded to those regions where ensemble spread was 443 

greatest. 444 

 445 

b.  Single observation in mid-latitude westerly flow 446 

The second set of single-observation experiments assimilated a 500 hPa 447 

temperature observation placed at 35°N, 120°E, on the southern periphery of the jet 448 

stream.  Again, the observation error standard deviation and innovation were 1 K and -2 449 

K, respectively.  For this case, the SR and DR 500 hPa potential temperature increments 450 
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were remarkably similar (Fig. 7a,b), although the SR increments again had finer 451 

structures.  Furthermore, the 500 hPa 45- and 15-km θ spreads over this region were 452 

broadly similar (Fig. 7c,d) and small compared to spread near the TC core.  Thus, the 453 

increments were smaller than those near the TC core.  For other meteorological variables 454 

and vertical levels, the DR and SR increments were also very similar (not shown).  455 

 456 

c.  Discussion 457 

The extent of the differences between the SR and DR hybrid analysis increments 458 

depended on the nature of the flow.  In benign westerly flow, the 45- and 15-km 459 

ensemble spreads were similar and the 15-km SR and DR hybrid increments were nearly 460 

identical.  However, around typhoon Sinlaku, the DR and SR increments differed 461 

substantially, which was related to major differences between the 45- and 15-km 462 

ensembles providing the BECs.  These single-observation tests suggest that DR and SR 463 

hybrid analyses will potentially be most disparate around small-scale features that HR 464 

ensembles can better resolve than LR ensembles.  In these cases, HR ensembles can be 465 

expected to better represent uncertainty, which should lead to more spread compared to 466 

LR ensembles.  Conversely, in regimes where synoptic-scale flow dominates, HR and LR 467 

ensembles are more likely to resolve features similarly, and these single-observation tests 468 

suggest that for large-scale patterns, SR and HR hybrid analyses may be quite similar.   469 

The next section objectively verifies analyses and forecasts produced by the SR 470 

and DR hybrid systems that assimilated real observations. 471 

 472 

 473 
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7.  Results: real data experiments 474 

Model output was compared to TC track forecasts and radiosonde observations.  475 

Aspects of the ensemble forecasts were also examined since they are important inputs to 476 

the hybrid.  The first ~5-days of the simulations were excluded from all verification 477 

statistics to allow ample time for the ensemble to “spin-up” from the initial, randomly 478 

generated ensemble.    479 

We focus primarily on 15-km WRF forecasts initialized by 15-km hybrid 480 

analyses.  However, we also show results from 45-km forecasts initialized by 45-km 481 

Hybrid_SR analyses, which, given the experimental design, were identical to the 45-km 482 

forecasts initialized by 45-km Hybrid_DR_1way analyses.  Since the WRF domains were 483 

one-way nested, we refer to the 15- and 45-km Hybrid_SR analyses and forecasts as 484 

“belonging” to separate, independent systems, even though the 15-km domain was a nest 485 

within the 45-km domain and the 15- and 45-km WRF forecasts were produced 486 

concurrently (e.g., Fig. 3). 487 

    488 

a.  Ensemble performance 489 

A high-quality prior ensemble is instrumental to successful hybrid analyses.  In a 490 

well-calibrated EnKF analysis/forecast system, when compared to observations, the prior 491 

ensemble mean root mean square error (RMSE) will equal the prior “total spread,” 492 

defined as the square root of the sum of the observation error variance and prior ensemble 493 

variance of the simulated observations (Houtekamer et al. 2005).  Therefore, the ratio of 494 

the prior total spread to the prior ensemble mean RMSE, called the “consistency ratio” 495 
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(CR; Dowell and Wicker 2009), should equal 1 in a well-calibrated system.  CRs < 1 496 

indicate insufficient ensemble spread. 497 

To enable comparison between the 45- and 15-km prior ensembles, verification 498 

occurred against a dataset comprised solely of radiosonde observations assimilated by 499 

both the 15- and 45-km EAKFs.  The 15- and 45-km ensembles were produced in 500 

Hybrid_SR and Hybrid_DR_1way, respectively.  The prior RMSE, total spread, and 501 

ensemble mean additive bias aggregated between 1800 UTC 8 and 0000 UTC 28 502 

September are shown in Fig. 8 for radiosonde observations.  Both ensembles had 503 

comparable wind biases and RMSEs (Fig. 8a,b), and the total spread agreed well with the 504 

RMSEs at most levels.  The 45-km ensemble had poorer temperature biases and RMSEs 505 

(Fig. 8c) than the 15-km ensemble below ~850 hPa but performed comparably to or 506 

better than the 15-km ensemble at higher levels.  For temperature observations, both 507 

ensembles had similar total spread that was greater then the corresponding RMSEs 508 

between ~400-200 hPa.  For specific humidity, at 500, 700, and 850 hPa, both ensembles 509 

had comparable RMSEs and dry biases (Fig. 8d).  However, at and below 925 hPa, the 510 

15-km ensemble had lower RMSEs than the 45-km ensemble and there were moist 511 

biases, although the 15-km ensemble bias was smaller.  Throughout the column, the 15-512 

km ensemble had more moisture spread than the 45-km ensemble, but both ensembles 513 

had insufficient spread above ~850 hPa.   514 

Both ensembles had CRs near 1 at most levels for wind (Fig. 9a,b), with the 15-515 

km ensemble performing best at and below 700 hPa.  For temperature observations (Fig. 516 

9c), at and above 500 hPa, the 45- and 15-km ensembles had comparable CRs, but below 517 

500 hPa, except at 1000 hPa, the 15-km ensemble had CRs closer to 1 than the 45-km 518 
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ensemble.  Similarly, 45-km CRs for specific humidity were closer to 1 than the 15-km 519 

ensemble at 1000 hPa (Fig. 9d), but at all other levels, the 15-km CRs for moisture were 520 

nearer to 1.  521 

 It is also interesting to examine the spatial distribution of the 45- and 15-km 522 

ensemble spreads.  The average prior ensemble standard deviation of 500 hPa wind speed 523 

between 1800 UTC 8 and 0000 UTC 28 September (Fig. 10a,b) was smallest over 524 

Eastern China, where observations were plentiful, and portions of the Pacific Ocean 525 

where there was little uncertainty about the location of the sub-tropical high-pressure 526 

system.  The 15-km ensemble had slightly higher spread in most areas.  Similar patterns 527 

were evident with the mean 500 hPa potential temperature spread (Fig. 10c,d).  A local 528 

spread maximum was evident in both 500 hPa wind and potential temperature southeast 529 

of Taiwan, where three TCs moved, reflecting the uncertainty of TC prediction.   530 

Consistent with Fig. 10, the 15-km ensemble had more spread than the 45-km 531 

ensemble throughout the column, as evidenced by the domain average prior ensemble 532 

standard deviations between 1800 UTC 8 and 0000 UTC 28 September (Fig. 11).  The 533 

45-km statistics were computed solely over the portion of the 45-km domain co-located 534 

with the 15-km nest.  At all levels for wind and water vapor mixing ratio (Fig. 11a,b,d), 535 

the 15-km ensemble had greater spread than the 45-km ensemble, but the 15-km 536 

ensemble spread was typically at most 10% greater than the 45-km ensemble spread.  The 537 

differences between the 15- and 45-km ensemble potential temperature spread (Fig. 11c) 538 

were small compared to those for other variables.     539 

Overall, both the 15- and 45-km ensembles were reasonably well calibrated, as 540 

CRs were typically within 10% of 1 for most levels and variables.  The 15-km ensemble 541 
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CRs were usually comparable to or better than the 45-km CRs, and the 15-km ensemble 542 

performed notably better than the 45-km ensemble below ~700 hPa, particularly for 543 

temperature and moisture.  Additionally, the 15-km ensemble had greater spread than the 544 

45-km ensemble, which is sensible, since errors on HR grids grow faster than those on 545 

LR grids (e.g., Lorenz 1969).  Yet, the differences in spread were usually small, and the 546 

next section assesses how these different ensemble spreads impacted the DR and SR 547 

hybrid analysis systems. 548 

 549 

b.  Mean hybrid background and analysis characteristics 550 

The background and analysis fits to observations were also examined.  A common 551 

observational set consisting of radiosonde observations solely over the 15-km domain 552 

was used for verification.  The following statistics were aggregated over each hybrid 553 

background (6-hr forecasts) and analysis between 1800 UTC 8 and 0000 UTC 28 554 

September (78 total).   555 

All backgrounds had similar average fits to radiosonde wind observations at most 556 

levels (Fig. 12a,b).  For radiosonde temperature observations (Fig. 12c), the 45-km 557 

Hybrid_SR biases were better than the 15-km biases between ~400-200 hPa.  The three 558 

15-km analyses had nearly identical mean background fits to temperature and radiosonde 559 

specific humidity observations (Fig. 12c,d).  However, for specific humidity, the 45-km 560 

Hybrid_SR background biases were notably worse than the 15-km biases below 925 hPa.   561 

Figure 13 shows the mean analysis fits to radiosonde observations.  On average, 562 

the 15-km analyses fit radiosonde wind observations (Fig. 13a,b) more closely than the 563 

45-km SR analysis at most levels, as evidenced by lower 15-km RMSEs and biases closer 564 
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to zero.  There was little difference between the 15-km Hybrid_DR_1way and 565 

Hybrid_DR_2way analysis fits, but the 15-km Hybrid_SR RMSEs were smaller than the 566 

15-km Hybrid_DR_1way RMSEs at most levels for zonal wind and below ~500 hPa for 567 

meridional wind.  This finding is consistent with the 15-km ensemble having slightly 568 

more spread than the 45-km ensemble for wind (e.g., Fig. 11).  Analysis fits to 569 

radiosonde temperature observations (Fig. 13c) were quite similar amongst all analyses, 570 

which reflects only minute differences between the 15- and 45-km temperature ensemble 571 

spreads.  The 15-km analyses more closely fit radiosonde specific humidity observations 572 

(Fig. 13d) than the 45-km Hybrid_SR analysis below ~850 hPa.  This behavior, and the 573 

slightly smaller 15-km Hybrid_SR RMSEs compared to Hybrid_DR_1way below ~850 574 

hPa, is consistent with larger 15-km ensemble spread for specific humidity. 575 

The mean 15-km Hybrid_DR_1way and Hybrid_SR 500 hPa potential 576 

temperature (Fig. 14a,b) and 700 hPa water vapor mixing ratio (Fig. 14c,d) analysis 577 

increments between 1800 UTC 8 and 0000 UTC 28 September were very similar, 578 

although the Hybrid_SR patterns were less smooth.  Furthermore, the mean 579 

Hybrid_DR_1way and Hybrid_SR 500 and 700 hPa heights (overlaid on Fig. 14) were 580 

remarkably similar.  The corresponding Hybrid_DR_2way increments and heights were 581 

also similar to those of Hybrid_DR_1way and Hybrid_SR (not shown).  Despite the 15-582 

km Hybrid_SR analyses sometimes fitting observations slightly closer than the other 583 

analyses, the mean increments and prior fits to observations suggest that the three 15-km 584 

DA systems performed similarly, on average.  We now assess whether these similar 585 

analyses translated into comparable forecasts.  586 

  587 
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c. TC track forecasts 588 

TC forecasts were verified as in S13 using “best track” positions from the Taiwan 589 

CWB as “truth.”  TC positions were diagnosed using a DART forward operator that 590 

locates TCs using 800 hPa circulation (e.g., Cavallo et al. 2013).  Track error statistics for 591 

each storm were computed from multiple WRF forecasts spanning the lifetime of each 592 

TC (Table 3).  The track of each TC is shown in Fig. 15.  Sometimes the experiments 593 

failed to predict a TC, and different experiments missed different storms.  Performing 594 

homogeneous comparisons based solely on storms that all experiments successfully 595 

predicted decreased sample sizes.  Thus, as in S13, inhomogeneous comparisons amongst 596 

the experiments were employed to compare TC track forecasts. 597 

Fig. 16 shows mean absolute track errors and sample sizes at each forecast hour.  598 

For Sinlaku (Fig. 16a,b), the 45-km forecast initialized from Hybrid_SR produced the 599 

largest track errors and missed the most storms after ~36-hrs, despite having the smallest 600 

initial errors.  There was little difference between forecasts initialized from the various 601 

15-km hybrid analyses, although Hybrid_DR_2way had the smallest errors after ~42-hrs.  602 

For Hagupit (Fig. 16c,d), again, there were few differences between the 15-km forecasts.  603 

However, the 15-km forecasts did not improve upon 45-km Hybrid_SR forecasts.  This 604 

finding is not necessarily surprising, as increased resolution does not always yield better 605 

TC forecasts (as discussed in Xue et al. 2013).  Hagupit’s track was governed by flow 606 

around the subtropical high, whose axis firmly extended into eastern China during 607 

Hagupit’s lifetime.  Thus, as a dominant large-scale feature was responsible for Hagupit’s 608 

movement, the potential benefit of HR was diminished.  Track errors for Jangmi (Fig. 609 

16e,f) were qualitatively similar to those for Sinlaku, with the 15-km forecasts improving 610 
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upon the 45-km Hybrid_SR-initialized forecast.  Again, there was little difference 611 

between the 15-km forecasts initialized by the various hybrid configurations. 612 

The track errors were also averaged over all three TCs (Fig. 17).  All 15-km 613 

forecasts improved upon the 45-km Hybrid_SR forecast after ~36-hrs.  Track errors from 614 

Hybrid_DR_2way were smallest after ~36-hrs, although differences between the 15-km 615 

forecasts were small compared to those between the 45- and 15-km forecasts.  There was 616 

also little difference regarding TC intensity among the 15-km forecasts (not shown), but 617 

they were collectively better than the 45-km Hybrid_SR intensity forecasts. 618 

 619 

d.  Forecast verification versus radiosonde observations  620 

To assess large-scale forecast performance, model output was verified against 621 

radiosonde observations at several forecast times.  As before, a common observational set 622 

consisting of radiosonde observations solely over the 15-km domain was used to verify 623 

all experiments.  Statistics were aggregated over 78 forecasts initialized every 6-hrs 624 

between 1800 UTC 8 and 0000 UTC 28 September.   625 

At 24-hrs, all experiments had similar RMSEs compared to radiosonde wind 626 

observations (Fig. 18a,b).  The 45-km forecast initialized from Hybrid_SR had slightly 627 

worse biases than the 15-km forecasts between ~500-400 hPa but slightly better biases 628 

above 250 hPa.  There was little difference between the 15-km forecast biases and 629 

RMSEs compared to radiosonde temperature and specific humidity observations (Fig. 630 

18c,d).  However, the 45-km Hybrid_SR-initialized forecast had the poorest temperature 631 

biases and RMSEs below ~500 hPa despite having the best biases above ~250 hPa (Fig. 632 

18c).  The 45-km forecast also had the poorest specific humidity biases and RMSEs 633 
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below 925 hPa (Fig. 18d).  Similar patterns were evident at and 36- and 48-hrs (not 634 

shown).   635 

At 72-hrs, all experiments usually had similar wind RMSEs and biases (Fig. 636 

19a,b).  Temperature and specific humidity biases and RMSEs (Fig. 19c,d) were similar 637 

to those at 24-hrs: there was little difference between the 15-km forecasts and the 45-km 638 

forecast had higher RMSEs for temperature and specific humidity below 700 hPa but the 639 

best temperature bias above ~250 hPa.   640 

 641 

8.  Summary and conclusion 642 

DR hybrid analysis capability was implemented within the community WRFDA 643 

system.  The DR hybrid combines observations, a HR background, and a LR ensemble to 644 

produce a deterministic HR analysis, permitting considerable computational savings 645 

compared to a SR hybrid configuration.  DR and SR experiments were performed that 646 

produced new hybrid analyses every 6-hrs in a continuously cycling framework over a 647 

~3.5 week period and initialized 72-hr WRF model forecasts.  Both the DR and SR 648 

hybrid systems ingested flow-dependent BECs provided by a 32-member ensemble that 649 

was updated by an EAKF, and different DR configurations examined whether it was 650 

preferable to re-center EAKF analysis ensembles about DR hybrid analyses.  The DR 651 

system combined a 15-km background with a 45-km ensemble, while the SR system 652 

combined a background and ensemble with equal, 15-km horizontal grid lengths.  SR 45-653 

km analyses and forecasts were also performed. 654 

On average, the 15-km prior ensemble had slightly more spread than the 45-km 655 

prior ensemble.  This behavior translated into slightly closer 15-km SR analysis fits to 656 
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radiosonde observations than the 15-km DR hybrid analyses that ingested 45-km 657 

ensemble perturbations.  However, the mean 15-km SR and DR hybrid analysis 658 

increments and prior fits to radiosonde observations were very similar.  Overall, 15-km 659 

forecasts initialized by 15-km DR and SR analyses were comparable, and re-centering the 660 

analysis ensemble about DR hybrid analyses only had a small impact.  661 

These collective results suggest that DR hybrid analyses can initialize similar 662 

quality forecasts as SR hybrid analyses.  This finding justifies the use of LR ensembles as 663 

the source of flow-dependent BECs for HR hybrid analyses and enables substantial 664 

computational savings compared to SR systems regarding both disk space and 665 

processing.  For our experiments, even though 15-km DR hybrid analyses required on 666 

average ~28% more iterations to converge than 15-km SR hybrid analyses, the 15-km DR 667 

analyses nonetheless finished ~3 times faster than the 15-km SR analyses, primarily 668 

because the DR hybrid had fewer extended control variables.  Additionally, during the 669 

ensemble of WRF model advances between EAKF analyses, the DR configuration 670 

realized a three-fold savings compared to the 15-km SR hybrid, since the 15-km nest was 671 

removed in the DR configuration for each ensemble member because a 15-km EAKF 672 

analysis was not required (e.g., Fig. 4).  Moreover, the 15-km SR hybrid required ~4 673 

times more disk space than the 15-km DR hybrid, as the 15-km SR hybrid required 674 

storage of 15-km perturbations, whereas the 15-km DR hybrid solely needed 45-km 675 

perturbations.  These savings could be utilized for many purposes, including increasing 676 

the ensemble size, which may benefit hybrid analyses.   677 

Here, the HR horizontal grid spacing was 3 times finer than the LR horizontal 678 

grid length.  As the ratio of LR to HR horizontal grid spacing increases, so do the 679 
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computational savings, but a larger grid ratio may translate into greater differences 680 

between SR and DR hybrid analysis/forecast systems than documented here. 681 

Additionally, an important question regards the utility of DR hybrid systems at increased 682 

resolution, particularly when the background is at sufficiently fine resolution that 683 

convective parameterization (CP) can be removed but the ensemble resolution is coarse 684 

enough that CP is required.  In such a configuration, the CP scheme may engender very 685 

different bias characteristics (e.g., Romine et al. 2013) in the prior ensemble compared to 686 

those of the convection-allowing background.  It is unclear how much of an impact this 687 

disparity may have, but this topic demands investigation as NWP models continue their 688 

progression toward higher resolution.  689 
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TABLES 884 

 885 

Physical parameterization WRF option References 

Microphysics Goddard 
Tao and Simpson 1993; Tao et al. 

2003 

Longwave radiation 
Rapid Radiative 

Transfer Model 
Mlawer et al. 1997 

Shortwave radiation Goddard Chou and Suarez 1994 

Planetary boundary layer Yonsei University Hong et al. 2006 

Land surface model Noah Chen and Dudhia 2001 

Cumulus parameterization 

Kain-Fritsch with 

modified trigger 

function 

Kain and Fritsch 1990, 1993; 

Kain 2004; Ma and Tan 2009 

Table 1.  Physical parameterizations used in both WRF domains. 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 
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Observing 

platform 

Observation type 

Assimilated in 

WRFDA-hybrid 

Observation type 

Assimilated in DART 
Notes 

Radiosonde 

Surface pressure 

Temperature 

Specific humidity 

Wind 

Surface pressure 

Temperature 

Specific humidity  

Wind 

 

Aircraft 
Temperature 

Wind 

Temperature 

Wind 

DART: superobbed in 

100 km x 100 km x 25 

hPa boxes 

Global 

positioning 

system radio 

occultation 

(GPSRO) 

Refractivity Refractivity 

 

Satellite-tracked 

winds 
Wind Wind 

DART: Assimilated over 

water only  

DART: Superobbed in 

100 km x 100 km x 25 

hPa boxes 

QuikScat Wind Not assimilated 

WRFDA-hybrid: 

Assimilated over water 

only 

Ship and buoy 

Surface pressure 

Temperature 

Specific humidity 

Wind 

Surface pressure 

Temperature 

Specific humidity 

Wind 

 

SYNOP and 

METAR 

Surface pressure 

Temperature 

Specific humidity 

Wind 

Surface pressure  

Bogus 

Temperature 

Specific humidity 

Wind 

 

Relative humidity 

Wind 

 

DART: only assimilated 

at 700 hPa  

Table 2.  Assimilated meteorological observations in the WRFDA-hybrid and DART 902 

systems.  See Schwartz et al. (2013) for more information. 903 

 904 

Storm Beginning time Ending time 

Sinlaku 1800 UTC 8 September 0600 UTC 20 September 

Hagupit 1200 UTC 19 September 1800 UTC 24 September 

Jangmi 1200 UTC 24 September 0000 UTC 1 October 

Table 3.  The beginning and ending times that were verified for each TC.  905 

 906 
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FIGURE CAPTIONS 907 

Fig. 1.  Two hypothetical examples of valid nested WRF domains. 908 

 909 

Fig. 2.  Computational domain overlaid with observations available for assimilation 910 

during the 0000 UTC 13 September analysis.  The inner box represents the bounds of the 911 

15-km domain, which is nested within the 45-km domain. 912 

 913 

Fig. 3.  Flow-chart describing a cycling EAKF and single-resolution hybrid system where 914 

separate, independent 45- and 15-km EAKF and hybrid analyses are performed. 915 

 916 

Fig. 4.  Flow-chart describing a cycling EAKF and dual-resolution hybrid system where 917 

the EAKF analysis ensemble is re-centered about the hybrid analysis.    918 

 919 

Fig. 5.  The 15-km 500 hPa potential temperature analysis increments at 0000 UTC 12 920 

September for (a) SR (b) DR analyses that assimilated a single observation at the location 921 

indicated by asterisks.  The background 500 hPa height (m; contoured every 40 m) is 922 

overlaid. (c,d) The 500 hPa potential temperature (c) 15-km and (d) 45-km prior 923 

ensemble standard deviations at 0000 UTC 12 September overlaid with the ensemble 924 

mean prior 500 hPa height.  The asterisks in (c) and (d) mark the location of the single 925 

assimilated observation that produced increments in (a) and (b).  Note that the height 926 

fields in (a-b) differ from those in (c-d) because the heights in (a-b) were from the 927 

deterministic background while those in (c-d) were from the ensemble mean. 928 

 929 
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Fig. 6.  As in Fig. 5 but for 500 hPa water vapor mixing ratio.  930 

 931 

Fig. 7.  As in Fig. 5, but increments were engendered by assimilation of a different 932 

observation, whose location is indicated by the asterisks. 933 

 934 

Fig. 8.  Average prior total spread, ensemble mean RMSE, and ensemble mean bias of 935 

radiosonde (a) zonal wind (m/s), (b) meridional wind (m/s), (c) temperature (K), and (d) 936 

specific humidity (g/kg) between 1800 UTC 8 and 0000 UTC 28 September.  The sample 937 

size at each pressure level is shown at the right of each panel.  938 

 939 

Fig. 9.  As in Fig. 8 except for consistency ratios. 940 

 941 

Fig. 10.  Average prior ensemble standard deviation (spread) of 500 hPa (a,b) wind speed 942 

(m/s) and (c,d) potential temperature (K) between 1800 UTC 8 and 0000 UTC 28 943 

September for the (a,c) 45- and (b,d) 15-km ensembles. 944 

 945 

Fig. 11.  Domain average prior ensemble standard deviations between 1800 UTC 8 and 946 

0000 UTC 28 September for (a) zonal wind (m/s), (b) meridional wind (m/s), (c) 947 

potential temperature (K), and (d) water vapor mixing ratio (g/kg).   The approximate 948 

pressures (hPa) of selected model levels are shown on the right axes of (b) and (d).  The 949 

45-km statistics were computed solely over the portion of the 45-km domain co-located 950 

with the 15-km domain. 951 

 952 



 44 

Fig. 12. RMSE (solid lines) and bias (dashed lines) for verification versus radiosonde (a) 953 

zonal wind (m/s), (b) meridional wind (m/s), (c) temperature (K), and (d) specific 954 

humidity (g/kg) observations averaged over all backgrounds (6-hr forecasts) between 955 

1800 UTC 8 and 0000 UTC 28 September.  The sample size at each level is denoted to 956 

the right of each panel. 957 

 958 

Fig. 13.  As in Fig. 12 but for the mean analysis fits to observations. 959 

 960 

Fig. 14.  15-km 500 hPa potential temperature analysis increments (K), wind vector 961 

increments (arrows), and mean background 500 hPa height (m) averaged between 1800 962 

UTC 8 and 0000 UTC 28 September for (a) Hybrid_SR and (b) Hybrid_DR_1way.  (c,d) 963 

As in (a,b) except for 700 hPa water vapor mixing ratio increments (g/kg), wind vector 964 

increments, and mean background height.  Hatching in (c) and (d) indicates those areas 965 

where the 700 hPa surface was underground.  Heights are contoured every 20 meters in 966 

(a,b) and every 10 meters in (c,d). 967 

 968 

Fig. 15.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, and Jangmi.  969 

Locations are plotted every 6-hrs.  See Table 3 for the starting and ending times of each 970 

storm. 971 

 972 

Fig. 16.  Mean 0-72-hr absolute track errors (km) and sample sizes for (a,b) Sinlaku, (c,d) 973 

Hagupit, and (e,f) Jangmi. 974 

 975 



 45 

Fig. 17.  As in Fig. 16 but track errors averaged over the three TCs and the total sample 976 

size. 977 

 978 

Fig 18.  Average RMSE (solid lines) and bias (dashed lines) for verification of 24-hr 979 

forecasts versus radiosonde (a) zonal wind (m/s), (b) meridional wind (m/s), (c) 980 

temperature (K), and (d) specific humidity observations averaged over all 24-hr forecasts. 981 

The sample size at each level is denoted to the right of each panel. 982 

 983 

Fig. 19.  As in Fig. 18 but for 72-hr forecasts. 984 
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Fig. 1.  Two hypothetical examples of valid nested WRF domains. 
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Fig. 2.  Computational domain overlaid with observations available for assimilation 

during the 0000 UTC 13 September analysis.  The inner box represents the bounds of 

the 15-km domain, which is nested within the 45-km domain. 
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Fig. 3.  Flow-chart describing a cycling EAKF and single-resolution hybrid system where separate, independent 

45- and 15-km EAKF and hybrid analyses are performed. 
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Fig. 4.  Flow-chart describing a cycling EAKF and dual-resolution hybrid system where the EAKF analysis 

ensemble is re-centered about the hybrid analysis.    
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Potential temperature increment (K)! Potential temperature increment (K)!

Potential temperature standard deviation (K)! Potential temperature standard deviation (K)!

(a) 15-km SR hybrid increment (b) 15-km DR hybrid increment 

(c) 15-km standard deviation (d) 45-km standard deviation 

Fig. 5.  The 15-km 500 hPa potential temperature analysis increments at 0000 UTC 12 September for (a) SR (b) DR analyses 

that assimilated a single observation at the location indicated by asterisks.  The background 500 hPa height (m; contoured 

every 40 m) is overlaid. (c,d) The 500 hPa potential temperature (c) 15-km and (d) 45-km prior ensemble standard deviations 

at 0000 UTC 12 September overlaid with the ensemble mean prior 500 hPa height.  The asterisks in (c) and (d) mark the 

location of the single assimilated observation that produced increments in (a) and (b).  Note that the height fields in (a-b) differ 

from those in (c-d) because the heights in (a-b) were from the deterministic background while those in (c-d) were from the 

ensemble mean. 
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(a) 15-km SR hybrid increment (b) 15-km DR hybrid increment 

(c) 15-km standard deviation (d) 45-km standard deviation 

Fig. 6.  As in Fig. 5 but for 500 hPa water vapor mixing ratio.
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(a) 15-km SR hybrid increment (b) 15-km DR hybrid increment 

(c) 15-km standard deviation (d) 45-km standard deviation 

Potential temperature increment (K)!

Fig. 7.  As in Fig. 5, but increments were engendered by assimilation of a different observation, whose location is indicated by 

the asterisks. 
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Radiosonde temperature  (K)!

Radiosonde zonal wind (m/s)!

Radiosonde specific humidity (g/kg)!

Radiosonde meridional wind (m/s)!

(d) 

Fig. 8.  Average prior total spread, ensemble mean RMSE, and ensemble mean bias of radiosonde (a) zonal wind (m/s), (b) 

meridional wind (m/s), (c) temperature (K), and (d) specific humidity (g/kg) between 1800 UTC 8 and 0000 UTC 28 

September.  The sample size at each pressure level is shown at the right of each panel.  
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Fig. 9.  As in Fig. 8 except for consistency ratios. 
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(c) 45-km standard deviation (a) 45-km standard deviation 

Fig. 10.  Average prior ensemble standard deviation (spread) of 500 hPa (a,b) wind speed (m/s) and (c,d) 

potential temperature (K) between 1800 UTC 8 and 0000 UTC 28 September for the (a,c) 45- and (b,d) 15-km 

ensembles. 
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Fig. 11.  Domain average prior ensemble standard deviations between 1800 UTC 8 and 

0000 UTC 28 September for (a) zonal wind (m/s), (b) meridional wind (m/s), (c) 

potential temperature (K), and (d) water vapor mixing ratio (g/kg).   The approximate 

pressures (hPa) of selected model levels are shown on the right axes of (b) and (d).  The 

45-km statistics were computed solely over the portion of the 45-km domain co-located 

with the 15-km domain. 
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Fig. 12. RMSE (solid lines) and bias (dashed lines) for verification versus radiosonde (a) zonal wind 

(m/s), (b) meridional wind (m/s), (c) temperature (K), and (d) specific humidity (g/kg) observations 

averaged over all backgrounds (6-hr forecasts) between 1800 UTC 8 and 0000 UTC 28 September.  

The sample size at each level is denoted to the right of each panel. 
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Fig. 13.  As in Fig. 12 but for the mean analysis fits to observations. 
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(a) 15-km Hybrid_SR increment 

(b) 15-km Hybrid_DR_1way increment 

(c) 15-km Hybrid_SR increment 

(d) 15-km Hybrid_DR_1way increment 

Fig. 14.  15-km 500 hPa potential temperature analysis increments (K), wind vector increments (arrows), and mean 

background 500 hPa height (m) averaged between 1800 UTC 8 and 0000 UTC 28 September for (a) Hybrid_SR and 

(b) Hybrid_DR_1way.  (c,d) As in (a,b) except for 700 hPa water vapor mixing ratio increments (g/kg), wind vector 

increments, and mean background height.  Hatching in (c) and (d) indicates those areas where the 700 hPa surface was 

underground.  Heights are contoured every 20 meters in (a,b) and every 10 meters in (c,d). 



Sinlaku 

Jangmi 

Hagupit 

Fig. 15.  (a) Best track positions of tropical cyclones Sinlaku, Hagupit, 

and Jangmi.  Locations are plotted every 6-hrs.  See Table 3 for the 

starting and ending times of each storm. 
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(c) Hagupit (d) Hagupit 

(e) Jangmi (f) Jangmi 

Fig. 16.  Mean 0-72-hr absolute track errors (km) and sample sizes for (a,b) Sinlaku, (c,d) 

Hagupit, and (e,f) Jangmi. 



(a) (b) 

Fig. 17.  As in Fig. 16 but track errors averaged over the three TCs and the total sample size. 
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Fig 18.  Average RMSE (solid lines) and bias (dashed lines) for verification of 24-hr forecasts 

versus radiosonde (a) zonal wind (m/s), (b) meridional wind (m/s), (c) temperature (K), and (d) 

specific humidity observations averaged over all 24-hr forecasts. The sample size at each level is 

denoted to the right of each panel.  
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Fig. 19.  As in Fig. 18 but for 72-hr forecasts. 


