

1. Introduction

- method with wavelet analysis.

2. Data and WRF Settings

(1) Observed Data <u>XRAIN*</u> data provided by MLIT in Japan is used. <u>*X</u>-band polarimetric (multi parameter) RAdar Information Network

3. Methods

Model Cumulus convection Microphysics Long wave radiation Short wave radiation Ground surface

diagrams of observation and WRF outputs, characteristics of meso-scale convective system simulated by WRF are evaluated appropriately.

A Method to Select the Fittest Microphysics-model for a Rainfall Event through Wavelet Analysis

Nozomu TAKADA¹, Yuusuke TANAKA², Shuichi IKEBUCHI¹, Eiichi NAKAKITA³ ¹Meteorological Engineering Center Inc., Japan ²Japan Agency of Marine-Earth Science and Technology, Japan ³Disaster Prevention Research Institute Kyoto University, Japan

• Recently, there are numbers of disasters caused by localized heavy rainfall in Japan. To prevent and reduce such disasters, it is very important to predict such localized heavy rainfall. • Characteristics of precipitation distribution predicted by WRF depend on the selection of microphysics-model. • We simulate severe local rainfall events with 5 microphysics-models, and compare the outputs from the models with the observed precipitation distribution through a new evaluation

2014 WRF Workshop P37