
 
 
The forecaster is a mathematical algorithm that takes 
advantage of several available model predictions 
(experts) and the knowledge of their past 
performance to generate a set of improved predictions 
in a sequential manner: 
 
 
 
 
 
 
 
 
 
 
 
The forecaster’s goal is to minimize the cumulative 
regret with respect to each one of the climate models. 
This is defined, for expert E, by the quantity: 

 𝑅↓𝐸,𝑡 ≡∑𝑛=0↑𝑡▒(𝑙( 
𝑝↓𝑡    ,  𝑦↓𝑡 )−𝑙(  𝑓↓𝐸,𝑡  , 
𝑦↓𝑡 ))≡ 𝐿↓𝑡 − 𝐿↓𝐸,𝑡   
𝑙  - loss function, a measure of the difference   - loss function, a measure of the difference 
between 
         the predicted and the true values. 

𝑦↓𝑡    - true value at time t. 

 𝑝↓𝑡       - predicted value by the forecaster at 
time t. 

 𝑓↓𝐸,𝑡   - predicted value by the expert E at 
time t. 

𝐿    - cumulative loss function.     - cumulative loss function. 
 
The outcome of the forecaster is a weighted average 
of the climate models in the ensemble, that is: 

  𝑝  ↓𝑡  ≡∑𝐸=1↑𝑁▒
𝑊↓𝐸 ,𝑡−1  ( 𝑅↓𝐸 ,𝑡
−1 )⋅ 𝑓↓𝐸,𝑡   
  𝑊↓𝐸,𝑡−1   - weight of expert 𝐸  
based on the regret up to time 𝑡−1. 
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Ensembles of climate models can improve climate 
predictions and reduce their uncertainties. Here, a new 
method from the field of decision making, which is 
based on a weighted average, is introduced. The 
weighted average is generated by comparing, during a 
learning period, the hindcasts of climate models with 
reanalysis data (considered here as true values), in one 
experiment, and real measurements, in a second 
experiment. It is shown that this method improves the 
predictions of global and regional climate models and 
reduces their uncertainties. 
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2. BASIC CONCEPT 

1. INTRODUCTION 

3. FORECASTERS 

EGA  
Exponentiated Gradient Average 
Converges to the measurements 


𝑝 ↓𝑡 ≡ 
∑𝐸=1↑
𝑁▒𝑒↑
−𝜂𝐿↓𝐸,𝑡
−1↑′  ⋅ 
𝑓↓𝐸,𝑡  /
∑𝑖=1↑𝑁
▒𝑒↑−𝜂
𝐿↓𝑖,𝑡
−1↑′    


𝑙(𝑝 ↓𝑡 , 
𝑦↓𝑡 )= (
𝑝 ↓𝑡 − 
𝑦↓𝑡 )↑2 


𝑙↑′ (
𝑓↓𝐸,𝑡 , 
𝑦↓𝑡 )=𝛻
𝑙( 𝑝 ↓𝑡 , 
𝑦↓𝑡 ) 

𝐿′↓𝐸,𝑡 
=∑𝑗=1↑
𝑡▒𝑙′( 
𝑓↓𝐸,𝑡 , 
𝑦↓𝑡 )  

5. GLOBAL – MULTI-MODEL ENSEMBLE 

Average Standard deviation of the 10-year 
monthly surface temperature for three 
forecasting methods - (a) EWA, (b) EGA, and 
(c) Simple average. The STD was calculated 
from the prediction period with constant 
weight as was determined by the last step of 
the learning period. Both forecasters reduce 
the uncertainties of the simple average. 

10-year RMSE of surface temperature for 
three forecasting methods - (a) EWA, (b) EGA, 
and (c) Simple average. The RMSE was 
calculated from the prediction period with 
constant weight as was determined by the last 
step of the learning period. Both forecasters 
improve the predictions of the simple average. 

ERROR UNCERTAINTY 

6. REGIONAL – MODEL ENSEMBLE 
Minimum 2m temperature RMSE 

Maximum 2m temperature RMSE 

•  In the global experiment, averaged over the globe and compared to a simple average, EWA and EGA have 
reduced surface temperature error by about 18% and uncertainties by 36% and 25% respectively. 

•  In the regional experiment, averaged over five locations and compared to the best model, EGA have 
reduced error by 19% and 41% and EWA have reduced error by 17% and 32% for min and max 
temperature respectively. 

7. CONCLUSIONS 

EWA  
Exponential Weighted Average 

Converges to the best model 

𝑙(𝑓↓𝐸,𝑡 , 
𝑦↓𝑡 )= (
𝑓↓𝐸,𝑡 − 
𝑦↓𝑡 )↑2 	  
𝐿↓𝐸,𝑡 

=∑𝑗=1↑
𝑡▒𝑙( 
𝑓↓𝐸,𝑡 , 
𝑦↓𝑡 ) 	  
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𝑝 ↓𝑡 ≡ 
∑𝐸=1↑
𝑁▒𝑒↑
−𝜂𝐿↓𝐸,𝑡
−1↑  ⋅ 
𝑓↓𝐸,𝑡  /
∑𝑖=1↑𝑁
▒𝑒↑−𝜂
𝐿↓𝑖,𝑡
−1↑    	  

𝜂 – Learning 

parameter, large 𝜂 
fast learning. 

EXPERIMENTAL 
SETUP 

-  Multi-model 
ensemble of 8 global 
climate model 
simulations from the 
CMIP5 decadal 
project. 

-  Thirty-year 
(1981-2011) 
simulation. 

-  NCEP reanalysis data 
considered as true 
values. 

-  Monthly averages of 
surface temperature. 

-  Twenty years of 
learning period (the 
weights are updated 
every month). 

-  Ten years of  
validation of the 
forecasters (the 
weights are 
constant). 

-  Model ensemble generated from  the 
regional WRF model concentrated on Israel 
based on 5 different land surface 
parameterization schemes*. 

-  Initialized with the NCEP Climate Forecast 
System Reanalysis (CFSR). 

-  All ensemble members include assimilation 
of the greenhouse gases mixing ratio 
(CLWRF) and have 4km horizontal grid 
resolution.  

-  Learning period climatology as an 
additional 6th  expert. 

-  Ten-year simulation (1981-1991). 
-  Israel Meteorological Service (IMS) station 

measurements as true values. 
-  Monthly averages of min and max 2m daily 

temperature. 
-  Six years of learning period 
-  Four years of  validation of the forecasters. 

  Land Surface Surface Layer Planetary 
Boundary Layer 

a5-layer thermal 
diffusion Eta similarity MYJ 

b Noah-LSM Eta similarity MYJ 
c Noah-MP MM5 similarity Yonsei University 

d Pleim-Xiu  
LSM Pleim-Xiu SL ACM2 PBL 

e RUC  LSM MM5 similarity Yonsei University 

Microphysics - WRF Single-Moment 6-class 
scheme 
Long/short wave radiation - CAM scheme  
Cumulus Parameterization - Kain-Fritsch scheme 

*Parameterizations 

Monthly average of minimum and maximum daily 
2m temperature RMSE for the prediction period. 
The results for five locations and an average of 
them are presented. AVR represents a simple 
a v e r a g e ,  a - e a r e t h e f i v e d i f f e r e n t 
parameterizations of the model and CLM is the 
climatology of the learning period. Except from 
two cases for EGA and one case for EWA in the 
minimum temperature, both forecasters improve 
the results of the individual models and their 
simple average. 

EXPERIMENTAL SETUP 


