Performance-related developments in WRF

John Michalakes NOAA/EMC (I.M. Systems Group)

Mike Iacono, David Berthiaume

Indraneil Gokhale Intel Corp.

WRF Users Workshop

June 24, 2014

Outline

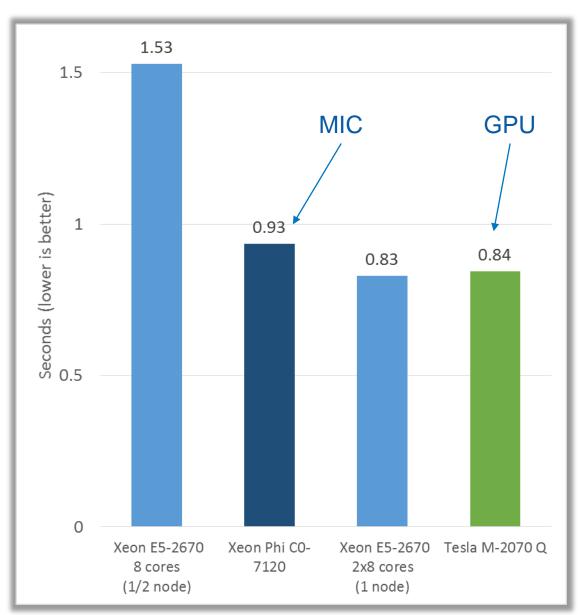
- Accelerators: GPU and MIC
- WRF software trends for HPC
- Conclusions

Accelerators

- Graphics Processing Units (GPUs)
- Intel Xeon Phi (Many Integrated Core, or "MIC")
- Roughly the same:
 - cost (energy and dollars)
 - performance potential (~teraflop peak)
- Different programming models and approaches to parallelism
 - "Bare metal" programming with CUDA on GPU
 - Programming directives and Fortran
 - OpenMP and Vector directives on MIC
 - OpenACC on GPU
 - All approaches require restructuring of loops and data structures for performance, which may also benefit code on host processor

Accelerating NWP

- NOAA
 - NCEP
 - Adapting operational models, starting with NMM-B
 - Detailed analysis and performance modeling of NWP kernels
 - ESRL (Govett, Henderson, Rosinksi, Middlecoff)
 - OpenACC parallelization of WSM5 and YSU PBL on GPU
 - Adding MPAS physics to NIM dynamics on MIC
 - Leading charge on "single source" implementations for GPU & MIC
- NCAR
- (Loft, Dennis, et al)
- New Intel Parallel Computing Center (IPCC) with U. Colorado
- Ongoing accelerator work on WRF, MPAS, CESM
- U. Wisc. SSEC (Huang, Mielikainen, et al)
 - CUDA implementations of many WRF kernels for GPU
 - Also awarded an Intel Parallel Computing Center
- AER (lacono, Berthiaum)
 - CUDA Fortran and OpenACC implementations of RRTMG on GPU
- Many others
 - NCAR Multi-core Workshop series: http://data1.gfdl.noaa.gov/multi-core

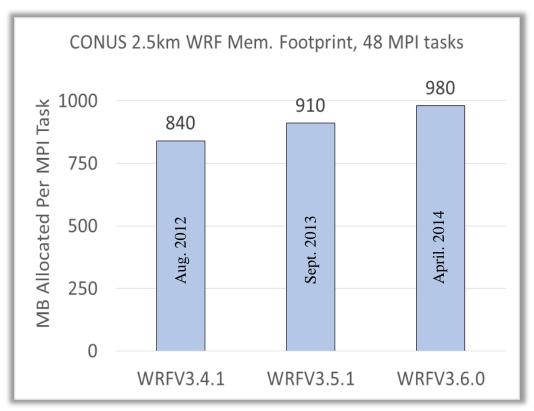

Accelerating RRTMG Radiation Physics

- AER Development of RRTMGPU
 - Originally funded by NASA for GEOS-5
 - DOE Climate Modeling SciDAC Program funding application to WRF
 - RRTMGPU_LW and SW implemented in WRF_v3.51 and testing in progress on NCAR Caldera
- NOAA/EMC
 - Porting and optimization of RRTMG in NMM-B and GFS to Intel MIC
 - MIC-restructured code ran 1.3X faster on host Xeons
- Apples-to-apples comparisons
 - Ported GPU version of AER's shortwave code to MIC
 - Converted OpenACC threading directives to OpenMP
 - We permuted the loop ordering to favor vectorization on MIC
 - Benchmarked an NMMB-like workload (from 4KM CONUS)

RRTMG Shortwave Performance

Test workload 18819 columns, 60 levels Elapsed time on Xeon, MIC and GPU

> (Note: Xeon and GPU are not newest versions of vendor hardware)


Accelerators: Summary

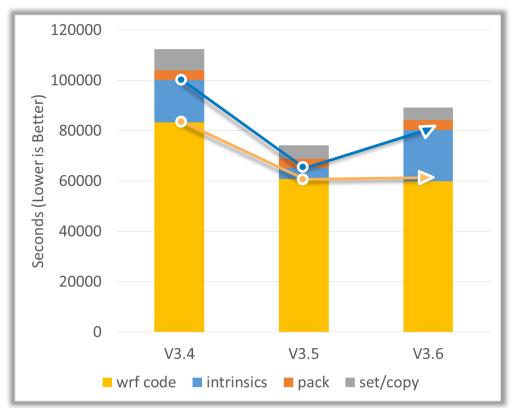
• Neither accelerator is living up to its name

- Latency-bound: large per-thread memory footprint exceeds caches, accesses spill to memory, floating point ops stall
- Likely similar effects on GPU
- Lesson for NWP on next generation architectures:
 - Wait for next next generation....
 - NERSC-8 "Cori" System 9300 hostless MIC (Knights Landing) nodes
 - <u>https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/</u>
 - Engineer codes for
 - Concurrency
 - Fine-grained parallelism
 - Leaner memory footprint per thread
- How's WRF doing?

WRF Software Trends

- Three WRF releases
 - Memory requirements

SINCE 2012 8% Growth per year (doubling time = 8.5 years)


21 more 3D arrays
47 more 2D arrays

plus 2 special purpose arrays: urb_param ≡ 4 3D arrays obs_savwt ≡ 10 3D arrays

Most of this is from new features, some of which could be but have not been "packaged" in the registry

WRF Software Trends

- Three WRF releases
 - Memory requirements
 - Performance
 - What's happening?
 - Intel-contributed Vectorization improvements from v3.4 to v3.5, especially for intrinsics (log and power)
 - Much of this appears to have been lost from v3.5 to v3.6

Profiles of where time is spent (gprof)

Summary: evolving to next-gen HPC

- Accelerators show promise but too little return on current hardware
- Prepping applications for next gen. hardware underway
 - Increasing concurrency
 - Increasing vectorization
 - Decreasing memory footprint
- More attention needs to be paid to fine-grained parallelism going forward
- WRF is heading in the wrong direction on memory use but no clear evidence it's hurting performance ... yet

Recommend

- Further study
- Test for performance and resource consumption
- · Consider requirements for software redesign for scalability