Using Data Assimilation and State Estimation in Marine Boundary Layer Paramaterizations to Improve Offshore Wind Energy Prediction

Jared A. Lee¹, Luca Delle Monache¹, Joshua P. Hacker¹, Branko Kosović¹, Francois Vandenberghe¹, Yonghui Wu¹, Andrew Clifton², Sam Hawkins³, Jesper Nissen³, and Dorita Rostkier-Edelstein

Motivation

- Offshore wind energy generation is a growing energy sector
- The marine atmospheric boundary layer (ABL) environment is not well studied or modeled
 - Very few instrumented tall towers offshore worldwide
 - ABL schemes generally tuned for performance over land
- Improvements in marine ABL schemes in NWP models can help offshore wind resource assessment, management, and short-term prediction

Middlegrunden wind farm near Copenhagen

Modifications to WRF-SCM

- Current distribution version of WRF-Single Column Model (SCM) hard-coded for use over land only
- Some modifications were necessary for use of WRF-SCM over water:
 - Values for XLAND and LANDMASK now set appropriately for land or water according to '&scm' namelist value of scm_lu_index
- Other modifications to WRF-SCM:
 - If provided, SCM now uses user-specified eta levels in namelist, instead of only model-calculated eta levels
 - Allows for higher model resolution over depth of tower
- Plan to submit these modifications to WRF development team for future public release

Ensemble Forcing Methodology

- Previously, SCM forcings built by random draws from "climatology" of met_em files
- New methodology builds SCM ensemble forcings from EOFs of 3D wrfout files over the period of interest
 - Mean forcing taken directly from 3D wrfout files
 - Modes calculated for each variable and each hour/ time of day separately
 - Perturbation ε is a linear combination of leading N modes (eigenvalue λ * eigenvector e)
 - Random coefficients α drawn from normal distribution with mean of 0.0 and std. dev. tuned so that forcing spread approximates mean forcing (3D WRF) RMSE averaged over the period of interest
 - AR(1) process applied to α's for temporal consistency (auto-regression coefficient 0.95)
 - Unique α 's for each ensemble member, and therefore, unique perturbations ϵ as well

$$\varepsilon = \sum_{n=1}^{N} \alpha_n \lambda_n \mathbf{e}_n$$

Ensemble forcing for U-wind for Oct 2006 4

Research Plan

- Couple Data Assimilation
 Research Testbed (DART)
 with WRF-SCM first to
 explore estimation of several
 parameters
 - MYNN-2.5 PBL scheme
 - MYNN surface layer scheme
 - Eventually move to 3D WRF
- Assimilate data from 100-m FINO1 tower in North Sea
 - 7 anemometers/wind vanes
 - 5 thermometers
 - Oct-Dec 2006, prior to construction of adjacent Alpha Ventus wind farm

3D WRF Setup

- WRF-ARW v3.4.1, 3 domains
 - 30/10/3.3 km
 - First levels 15, 45, 75, 100, 130, 195, 315, 490 m
- Thompson MP, MYNN PBL, Kain-Fritsch Cumulus (D1 & D2 only), Noah LSM, RRTM/ Dudhia radiation
- ICs & LBCs from Climate Forecast Reanalysis System (0.5°)
- SST from NCEP RTG (0.083°) and DMI (0.03°)

SCM-DART Setup

WRF-SCM v3.4.1

- Vertical advection on
- All other advection off
- 60 eta levels
 - Bottom 10 levels spaced every ~20 m from 30-210 m
- SST updated daily via auxinput8

DART

- Ensemble adjustment Kalman filter (EAKF)
- Vertical localization 4 km
- 1-h assimilation cycles
- Assimilating T, Td, U, V
- Tuned observation errors to improve match between average RMSE and Total Spread
 - T = 1.0 K, Td = 1.5 K, U,V = 1.0 m/s

Preliminary SCM-DART Results Nov 2006 – U-wind component

RMSE and Total Spread

Obs., Ens. Mean, Mean Forcing

U-wind Component (tower avg.)

Case tunevar10 scm3.4.1 pertsSD0.8 Prior Avg. Stats [m/s]: RMSE = 3.40, Total Spread = 3.30, Bias = 2.54 30 U-wind Component [m/s] 1-03_00 1-05_00 1-09_00 1-11_00

Time

Preliminary SCM-DART Results Nov 2006 – Temperature

RMSE and Total Spread

Obs., Ens. Mean, Mean Forcing

Preliminary SCM-DART Results

RMSE	Oct 2006		Nov 2006	
	Mean Forcing	SCM-DART	Mean Forcing	SCM-DART
Temperature (K)	1.48	0.62	1.44	0.77
U-wind (m/s)	3.32	3.16	3.32	3.40
V-wind (m/s)	5.14	2.72	5.14	3.04

- SCM-DART prior (1-h) forecasts generally have lower monthly average RMSE compared to the mean forcing (3D WRF) monthly average RMSE over the depth of the FINO1 tower
- Further improvements are expected with parameter estimation and improved WRF ICs (coming soon)

Summary

- Modified WRF-SCM for use over water
- Created new SCM ensemble forcing methodology that only requires 3D wrfout files for period of interest
- Initial SCM-DART results promising, yielding comparable average RMSE & total spread
- Priors (1-h forecasts) generally closer to observations than mean forcing, so assimilation is working well

Ongoing/Future Work

- Investigate sensitivity of WRF to roughness parameter, use SCM-DART to estimate it
- Compare SCM-DART performance with different 3D WRF initial conditions
 - Baseline (no DA) Used for this presentation
 - WRF w/ nudging DA
 - WRF coupled with WaveWatch III (WWIII)
 - Roughness parameter estimation without WRF-WWIII coupling
- Demonstrate wind resource assessment capability
- Move from SCM-DART to 3D WRF-DART parameter estimation experiments

Thanks for listening!

Preliminary SCM-DART Results Oct 2006 – U-wind component

RMSE and Total Spread

U-wind Component (tower avg.)
Case tunevar10_scm3.4.1_pertsSD0.8T0.5U
Prior Avg. Stats [m/s]:
BMSE = 3.16 Total Spread = 2.70 Bias = 2.1

Obs., Ens. Mean, Mean Forcing

U-wind Component (tower avg.)
Case tunevar10_scm3.4.1_pertsSD0.8T0.5U
Prior Avg. Stats [m/s]:

Preliminary SCM-DART Results Oct 2006 – Temperature

RMSE and Total Spread

Temperature (tower avg.) Case tunevar10 scm3.4.1 pertsSD0.8T0.5U Prior Avg. Stats [K]: RMSE = 0.62, Total Spread = 1.16, Bias = 0.09 7.0 RMSE, Total Spread, Bias [K] 6.0 3.0 2.0 1.0 0.0 0-17_00 Time

Obs., Ens. Mean, Mean Forcing

FINO1 Wind Observations

- How to deal with wind observations that are shadowed by the mast?
- Define mast shadow as winds from the direction:

(boom angle)+180° +/- 30°

- How prevalent are shadowed obs?
 - 13.7% of obs times have no valid wind obs
 - Over 80% of obs times
 have 5 or 6 valid wind obs

FINO1 Wind Observations

- Vast majority of wind data "outages" due to shadowing are an hour or less in duration
- Because of this and wind data "outages" only occurring for under 14% of all obs times, for now we are throwing out all shadowed wind obs

State Augmentation Motivation

- NWP models have deficiencies in surface and boundary layer parameterization schemes
- Structural and physical model deficiencies are often poorly understood
- Uncertainty in model parameters
 - Constant or variable?
 - Often cannot measure "correct" value
- Data assimilation can be used to estimate parameter values
 - Reduced forecast (background) error shows the parameter is accounting for some related model error
- DART updates WRF state vector of T, Td, U, V
- Parameter array appended to state vector