

Evaluation of the new surface drag parameterization scheme

Wanjun Zhao Daniel van Dijke

Use of WRF winds

WRF applications for wir

- Wind assessments [talk: 6B.5]
- Wind power forecasts [poster:
- Hindcast extreme wind events
- Wind forecast

Min: 0.1 m/s; Max: 32.3 m/s

Maximum wind speed at 70m at 14-07-2010

Improve wind in complex terrain, remove bias. Use scheme of Jimenez and Dudhia (2012)

 Jimenez, P. A. and J. Dudhia (2012). "Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF Model." <u>Journal</u> <u>of Applied Meteorology and Climatology</u> 51(2): 300-316.

WRF setup

v3.4.1

3 km inner domain ERA interim boundaries 24h spinup, 48h run Italy period of 28-01-2012 till 28-02-2012 Spain period of 01-12-2012 till 01-12-2013

Item	Jimenez and Dudhia	This study
Short wave radiation	Dudhia	Goddard
Long wave radiation	RRTM	RRTM
Cumulus	Kain-Fritsch (old)	Kain-Fritsch (new)
Microphysics	WSM6	WSM6
Land surface	SLAB	Noah LSM
PBL	YSU	YSU
First model level at	~30m	~10m

Results Italy - Bias

Without the new scheme

With the new scheme

Results Spain - Bias

• Without the new scheme

• With the new scheme

Results Spain – Bias vs mean wind speed

 Jimenez, P. A. and J. Dudhia (2012). "Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF Model." <u>Journal of</u> <u>Applied Meteorology and Climatology</u> 51(2): 300-316.

Results Spain – scatter plot

Station 8080

obs(m/s)

Results Spain - scatter per season

Results Spain - Bias >5m/s

Results Spain – Q-Q plots

Results Spain - CSI score

Conclusions

- Observation quality doubtful.
- Representative grid point important.
- No clear "winner"
- Quality of station more uncertain than quality in-/ decrease due to scheme?
 - Further investigation to station quality and representativeness of nearest grid point
- Vertical structure of model important?
 - Redo study without first model level

Empowering the world to master the weather