Model Biases in Precipitation and Air-Sea Fluxes in Tropical Cyclones

Shuyi Chen Brandon Kerns, Falko Judt, Milan Curcic, and Chia-Ying Lee RSMAS/University of Miami

(WRF Users Workshop, 25 June 2014)

Data and Model

□ In situ air-sea latent and sensible heat fluxes using NOAA P-3 dropsondes and AXBTs data from DYNAMO, ITOP (typhoons), and Atlantic hurricanes.

□ TRMM and CMORPH rainfall

□ Airborne SFMR (Step Frequency Microwave Radiameter) surface wind

□ WRF-ARW model (physics ensemble)

UMCM (University of Miami Coupled Atmosphere-Wave-Ocean Model)

University of Miami Coupled Model (UMCM)

• <u>Weather Research and Forecasting (WRF-ARW) v3.5</u>:

12/4/1.3 km horizontal resolution with storm following nests, 36 vertical levels (phys: YSU PBL, Donelan+Garrat sfc., WSM5/6) Initial and boundary conditions from NCEP GFS/FNL

• <u>University of Miami Wave Model (UMWM) v1.1</u>:

4 km horizontal resolution, 36 directional bins and 37 frequency bins from 0.0313 - 2 Hz

• <u>HYbrid Coordinate Ocean Model (HYCOM) v2.2.34</u>:

1/25 degree (~4 km) horizontal resolution, 32 vertical levels;

Initial and boundary conditions from global 1/12 deg. HYCOM

Drag Coefficient: AWO for all conditions

UM Hurricanes and Coupled Modeling Group

Chen et al. (2014): Coupled Observations and Air-Sea Fluxes in TCs.

What are the air-sea heat and most fluxes in tropical cyclones?

ITOP (Impact of Typhoons on Ocean in Pacific): Co-located Dropsondes and AXBTs

Observation of Air-Sea Latent and Sensible Heat Fluxes in DYNAMO

- 1. Bulk fluxes using P-3 dropsondes and AXBTs data (COARE 3.2)
- 2. Turbulence fluxes from *R/V* Revelle

LH & SH fluxes from ITOP and Atlantic Hurricanes (Isaac, Katrina, Rita, ...)

Rainfall Comparison with TRMM data

Rainfall Comparison with TRMM

UM Hurricanes and Coupled Modeling Group

Hurricane Earl (2010)

Ensemble Forecasts Using WRF-ARW Model (nested grids 12/4/1.3 km)

 Physics parameterization ensemble (Control+19 members)

 Generated by using various physical parameterizations of cloud microphysics (9), surface fluxes (7) and PBL (3) schemes

2) Stochastic Kinetic Energy Backscatter (SKEBS) ensemble (5 ensembles, each with 20 members)

- Adding small, stochastic perturbations to (u,v) and T tendencies (Berner et al. 2005, 2011)

Tendencies:
$$\Psi'(x, y, t) = rD(x, y, t)\psi'(x, y, t)$$
 ~O(10⁻⁴ m/s, 10⁻⁹ K/s)
backscatter ratio dissipation rate

Perturbations as a function of spatial scale:

- Ensemble 1: All-scale perturbations
- Ensemble 2: Synoptic-scale perturbations+BL
- Ensemble 3: Synoptic-scale perturbations
- Ensemble 4: Mesoscale perturbations
- Ensemble 5: Convective scale perturbations

- = 525 4200 km
- = 525 4200 km
- = 24 200 km
- = 2 11 km

Physics ensemble

Hurricane Earl (2010) Physics Ensemble - Tracks

UM Hurricanes and Coupled Modeling Group

UM Hurricanes and Coupled Modeling Group

Day 3 Wind: model and SFMR

Day 4

Day 6

Rain: Model and TRMM/CMORPH Hurricane Earl Azimuthal Rain Profiles: Day 3 Hurricane Earl Azimuthal Rain Profiles: Day 3

Hurricane Earl Azimuthal Rain Profiles: Day 4

Radius (km)

Hurricane Earl Azimuthal Rain Profiles: Day 4

Contraction of Contract

Radius (km)

PBI MYNN-2.5TKI

PBL MYJ

Hurricane Earl Azimuthal Rain Profiles: Day 6

Ensembles 10-16 (Flux Physics

Hurricane Earl Azimuthal Rain Profiles: Day 6 700 ñ Radius (km)

Radius (km)

- SFMR (2 10.17-24Z)

MP WDMS

MP WDM6

MP Ferrier MP WSM3

MP Goddard

Control (MP WSM6 MP Lin MP Morrison MP Thompson MP WSM5

Hurricane Earl Azimuthal Rain Profiles: Day 6 MP Lin MP Morrison MP Thompso MP WSM5 MP WDM5 MP WDM6 MP Goddard MP Ferrier MP WSM3 700 Radius (km)

UM Hurricanes and Coupled Modeling Group

infall

PBI MYNN-2.5TKI

PBL QNSE

PBL MYJ

Radius (km)

Control: YSU PBL

MYNN-2.5TKE PBL

Summary

Uncoupled atmospheric model (UA) with unrealistically warm SST produces excessive surface latent and sensible heat fluxes, which lead to a vicious cycle:

Excessive heat/moisture fluxes -> more rain/stronger convection -> large evaporative cooling and stronger wind -> larger heat/moisture fluxes

Coupled atmosphere-ocean (AO) and atmosphere-wave-ocean (AWO) can correct a significant part (but not all) of the model biases in air-sea fluxes and rainfall, which is a good starting point to break up the vicious cycle

Physics ensembles reveal general problems in rain and air-sea fluxes (extreme high biases) in WRF

➢ Rain and fluxes (& TC intensity) are more sensitive to PBL and surface layer physics than microphysics

> Need to build better NWP models with sound energetics from the bottom up!

