Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison

<u>Christoph Knote</u>^a, Paolo Tuccella^b, Gabriele Curci^b, Louisa Emmons^a, John J. Orlando^a, Sasha Madronich^a, Rocio Baro^c, Pedro Jimenez-Guerrero^c, Deborah Luecken^d, Christian Hogrefe^d, Renate Forkel^e, Johannes Werhahn^e, Marcus Hirtl^f, Juan L. Perez^g, Roberto San Jose^g, Lea Giordano^h, Dominik Brunner^h, Khairunnisa Yahyaⁱ, Yang Zhangⁱ

- ^a Atmospheric Chemistry Division, NCAR, Boulder, CO USA
- ^b Department of Physical and Chemical Sciences, CETEMPS, University of L'Aquila, L'Aquila, Italy
- ^C University of Murcia, Department of Physics, Physics of the Earth. Campus de Espinardo, Ed. ClOyN, 30100 Murcia, Spain
- d Atmospheric Modelling and Analysis Division, Environmental Protection Agency, Research Triangle Park, USA
- ^e Karlsruher Institut f
 ür Technologie (KIT), Institut f
 ür Meteorologie und Klimaforschung, Atmosph
 ärische Umweltforschung (IMK-IFU), Garmisch-Partenkirchen, Germany
- ^f Section Environmental Meteorology, Division Customer Service, ZAMG Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria
- ^g Environmental Software and Modelling Group, Computer Science School Technical University of Madrid, Madrid, Spain
- h Laboratory for Air Pollution and Environmental Technology, Empa, Duebendorf, Switzerland
- ⁱ Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University

submitted to Atmospheric Environment

AQMEII phase 2 model intercomparison

WRF-chem (10x) WRF-CMAQ (3x) **GEM-MACH** COSMO-MUSCAT **COSMO-ART** NMMB/BSC-CTM **ENVIRO-HIRLAM** MetUM/UKCA Silam **RACMO2-LOTOS-EUROS** MEMO/MARS-aero bolChem

period full year 2010, optionally 2006 domain EU / NA (or both) emissions TNO-MACC (updated) EPA-NEI 2010 (2008 + updates)

mechanism shootout

http://4.bp.blogspot.com/_VX6ehGADPpA/Sh-IYFJegAl/ AAAAAAABio/6xwzAgFiw3A/s400/GoldenGunDuel.jpg

RADM2 (Stockwell et al., 1990) RADMKA (Vogel et al., 2009) RACM (Stockwell et al., 1997) CBMZ (Zaveri and Peters, 1999) CB05-TUCL (Yarwood et al., 2005 + updates) CB05-Clx (Yarwood et al., 2005 + updates) MOZART-4 (Emmons et al., 2010 + updates)

"2 I/2 decades of atmospheric chemistry"

mechanisms KPP (Sander and Sandu, 2006) using Rosenbrock solver

the "box"

deposition

simple first order loss (inorganics only) anthro.VOCs from wrfchemi files of each group

mechanism biases in O₃ against the multi-model mean

- mechanisms within 3.6 ppbv in avg. O₃
- different responses to clean, rural, or urban conditions
- high variability under strong biogenic VOC influence

location of surface measurements used in

Im et al., 2014: Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone.

mechanism performance when compared against station network might be skewed due to station selection. **Run box model using emissions at these station locations.**

secondary products

VOC evaluation against satellite measurements?

"Remote" O₃ production?

ppbv

vdqq

Secondary inorganic aerosols (NH₃NO₃)?

Conclusions

- mechanisms agree on average O₃ within 3-5 ppbv, differences in peak O₃ 7-8 ppbv
- good agreement in avg. HO_x, large differences in variability
- startling differences in key nighttime species as well as major secondary products

Implications

- mechanism form O₃ for different reasons, will hence react differently to changes in emissions (or climate)
- choice of gas-phase mechanism is a considerable source of uncertainty for other observables (oxidations, secondary products, particulate matter)