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AQMEII phase 2 model intercomparison
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period 
full year 2010, optionally 2006	



domain  
EU / NA (or both)	



emissions 
TNO-MACC (updated)  
EPA-NEI 2010 (2008 + updates)



mechanism shootout
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RADM2 (Stockwell et al., 1990)	


RADMKA (Vogel et al., 2009)	


RACM (Stockwell et al., 1997)	


CBMZ (Zaveri and Peters, 1999)	


CB05-TUCL (Yarwood et al., 2005 + updates)	


CB05-Clx (Yarwood et al., 2005 + updates)	


MOZART-4 (Emmons et al., 2010 + updates)	


!

“2 1/2 decades of atmospheric chemistry”



the “box”mechanisms
KPP (Sander and Sandu, 2006)	


using Rosenbrock solver



the “box”mechanisms

TUV 	


(Madronich and Flocke, 1997)	


idealized diurnal cycle 	


(40°N, clear sky)

photolysis rates

entrainment
mix against initial conditions	


(same for all models, VOCs=0)

KPP (Sander and Sandu, 2006)	


using Rosenbrock solver

deposition
simple first order loss	



(inorganics only)

emissions
inorganics (NOx, CO, SO2, NH3)	


and biogenics (MEGAN)	


from common base model	


!
anthro. VOCs from 	


wrfchemi files of each group

initial conditions
30 ppbv O3, 120 ppbv CO, 

1-10 ppbv NOx, 1 ppbv SO2



the “box”: an idealized  
planetary boundary layer

3 day long simulations

entrainment

collapsing mixing	


volume



mechanism biases in O3
against the multi-model mean
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mechanism biases in O3
against the multi-model mean

• mechanisms within 3.6 ppbv in avg. O3

• different responses to clean, rural, or urban conditions
• high variability under strong biogenic VOC influence

-1.8               0               1.8  ppbv

ΔRADM2 ΔRACMΔCBMZ ΔRADMKA

multi-model mean	


O3

50	


40	


30	


20	


10	


ppbv



mechanism performance
at the location of measurements

location of surface measurements used in 
Im et al., 2014: Evaluation of operational online-coupled regional air quality models 
over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. 

mechanism performance when compared against station network 
might be skewed due to station selection.	



Run box model using emissions at these station locations.

218 stations

510 stations



oxidants
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• avg. O3 within 5 ppbv, peak 
O3 within 7-8 ppbv	



• differences in HOx variab.	


• nighttime chemistry (NO3) 

needs more investigation



secondary products

Secondary inorganic 
aerosols (NH3NO3)?

“Remote” O3 
production?

VOC evaluation against 
satellite measurements?



Conclusions
• mechanisms agree on average O3 within 3-5 ppbv, 

differences in peak O3 7-8 ppbv	



• good agreement in avg. HOx, large differences in variability	



• startling differences in key nighttime species as well as 
major secondary products

Implications

• mechanism form O3 for different reasons, will hence 
react differently to changes in emissions (or climate)	



• choice of gas-phase mechanism is a considerable 
source of uncertainty for other observables 
(oxidations, secondary products, particulate matter)




