Developing adjoint and tangent linear subgrid parameterizations of source, loss, and vertical transport mechanisms for chem. tracers in WRFPLUS

WRF USER WORKSHOP June 25, 2013

Jonathan Guerrette (CU Boulder)

Daven Henze **Gregory Carmichael** (University of Iowa)

(CU Boulder)

Image: MODIS true color image on June 24, 2008 (http://cimss.ssec.wisc.edu/)

This research is funded by

U.S. EPA - Science To Achieve Results (STAR) Program

Grant

AeroCom Intercomparison (y. 2000)

[BC] uncertainty is similar order as [BC] magnitude!! ->Worse above surface and at smaller scales

LOW bias near BB, HIGH bias near ANTHRO

June 23, 2008 IMPROVE Results

WRF Models

Existing

Current Work

WRF Meteorology:

Non-hydrostatic moist dynamics, diffusion, subgrid parameterizations for PBL, Cumulus Convection, Microphysics, Radiation WRF-Chemistry (GOCART): Advection, emission, fire plume rise, 1st-order decay, dry/wet deposition losses, PBL and convective transport of chemical tracers

Existing

Future Work

WRFPLUS: Adjoint (AD) and Tangent Linear (TL) models for dynamics, diffusion, and select parameterizations

Existing

WRFDA: Data Assimilation (4DVAR predicated on WRFPLUS)

WRFPLUS Capabilities

- AD and TL developed for:
 - Emissions (Anthropogenic and Biomass Burning for GOCART)
 - ACM2 PBL (Pleim et al. 2007) w/ integrated tracer transport (2013) (7)
 - Pleim-Xiu and SFCLAY surface layer schemes (7,1)
 - Pleim-Xiu and SLAB LSMs (7,1)
 - Wesely Dry Deposition
 - chem advection (similar to tracer advection by Xin Zhang in 2012)
 - GOCART Aerosols
 - BC aging
 - PM summation
 - Sulfate chemistry (pending testing)
- New forcing scheme for in-situ chemical observations
- 2nd-order checkpointing for long duration (> 6 hr) sensitivity studies
- Standalone AD and TL:
 - Grell-Freitas Convection (2013) [chemical tracers in development]

3 hour Derivative Tests

- Tangent Linear test
- Finite Difference linearity test
- 300 grid pairings per sensitivity type

Tangent Linear Validation

Centered Difference Nonlinearity

WRFPLUS w/ 1st order checkpointing

(1) Run forward model; write state variable trajectory @ each time step $(u, v, \theta, \Phi, \mu, moist, chem)$

 $\mathbf{x} = {\mathbf{E}, \mathbf{u}^0, \mathbf{T}^0, \mathbf{q}_v^0, [BC]^0, etc.}$ (known *a priori*)

New 2nd-Order Checkpointing in WRFDA

Trajectory – All model state variables stored at every grid cell and every time step (u, v, w, t, ph, mu, moist x1-3, chem x19)

coarse 18km grid (10 boundary cells)

3 hr for dt=90s

1 CORE: $RAM_1 \approx 89 \times 89 \times 31 \times 26$ variables $\times 8$ bytes $\times 120$ time steps = 5.8GB (single core)

64 CORES: **RAM₆₄** ~ 5.8GB * 1.5^6 = 66GB -> **1GB per core** + normal memory requirements

Initial full forward model run without trajectory IO

Initial run generates RESTART files

Checkpoint forward model run with trajectory output

Checkpoint adjoint model run with trajectory input

Cost Function & Chem Obs.
$$J = \sum_{m}^{M} \{ H_m [M_m (\mathbf{x})] - y_m \}^T \mathbf{R}^{-1} \{ H_m [M_m (\mathbf{x})] - y_m \}; \quad \mathbf{R} = \mathbf{I}$$

- $\sum_{m=1}^{Q_m} y_m^q$ Assumed only for this demonstration

- $\overline{M}_{m,SURF} = \frac{1}{P_m} \sum_{p=p_{0,m}}^{P_m} M_m^p(\mathbf{x}) \quad \overline{y}_{m,AIR} = \frac{1}{Q_m} \sum_{q=q_{0,m}}^{Q_m} y_m^q$
- **Two Preprocessed Observation Sets:**

	n	n n _i	n _f	i	j	k	[BC]
ROVE	- 36	281.000	1240.000	17.746353149414	76.181304931641	1.0000000000000	1.149e-01
	37	281.000	1240.000	70.141807556152	11.226648330688	1.000000000000	1.857e-01
	38	241.000	1200.000	58.793373107910	32.409439086914	1.000000000000	3.750e-02
	39	3161.000	4120.000	40.150882720947	9.093823432922	1.000000000000	3.861e-01
Ш	40	3161.000	4120.000	25.215013504028	43.165985107422	1.000000000000	6.785e-01
	41	. 3121.000	4080.000	63.426769256592	35.204486846924	1.000000000000	9.070e-02
	2641	1008.000	1008.111	35.719543457031	17.366888046265	4.452124834061	1.202e-01
ARCTS- CARB	2642	1008.111	1008.222	35.693733215332	17.304485321045	4.621666073799	7.801e-02
	2643	1008.222	1008.333	35.672988891602	17.241428375244	4.776512444019	8.249e-02
	2644	2527.333	2527.444	34.414424896240	16.163387298584	1.0000000000000	1.796e-01
	2645	2527.444	2527.556	34.368530273438	16.131366729736	2.202630057931	1.042e-01
	2646	2527.556	2527.667	34.312656402588	16.110553741455	3.223917886615	9.411e-02

Cost Function & Chem Obs.

$$J = \sum_{m}^{M} \left\{ H_m \left[M_m \left(\mathbf{x} \right) \right] - y_m \right\}^T \mathbf{R}^{-1} \left\{ H_m \left[M_m \left(\mathbf{x} \right) \right] - y_m \right\}; \quad \mathbf{R} = \mathbf{I}$$

$$M_{m,SURF} = \frac{1}{P_m} \sum_{p=p_{0,m}}^{P_m} M_m^p \left(\mathbf{x} \right) \quad \overline{y}_{m,AIR} = \frac{1}{Q_m} \sum_{q=q_{0,m}}^{Q_m} y_m^q \quad \text{Assumed only for this demonstration}$$

Two Preprocessed Observation Sets:

	m	n _i	n _f	i	j	k	[BC]
APROVE	36	281.000	1240.000	17.746353149414	76.181304931641	1.0000000000000	1.149e-01
	37	281.000	1240.000	70.141807556152	11.226648330688	1.000000000000	1.857e-01
	38	241.000	1200.000	58.793373107910	32.409439086914	1.000000000000	3.750e-02
	39	3161.000	4120.000	40.150882720947	9.093823432922	1.000000000000	3.861e-01
	40	3161.000	4120.000	25.215013504028	43.165985107422	1.000000000000	6.785e-01
	41	3121.000	4080.000	63.426769256592	35.204486846924	1.000000000000	9.070e-02
	2641	1008.000	1008.111	35.719543457031	17.366888046265	4.452124834061	1.202e-01
ARCTS- CARB	2642	1008.111	1008.222	35.693733215332	17.304485321045	4.621666073799	7.801e-02
	2643	1008.222	1008.333	35.672988891602	17.241428375244	4.776512444019	8.249e-02
	2644	2527.333	2527.444	34.414424896240	16.163387298584	1.000000000000	1.796e-01
	2645	2527.444	2527.556	34.368530273438	16.131366729736	2.202630057931	1.042e-01
	2646	2527.556	2527.667	34.312656402588	16.110553741455	3.223917886615	9.411e-02

J =	14	Cost Function & Chem Obs.									
$J = \sum_{m}^{M} \left\{ H_{m} \left[M_{m} \left(\mathbf{x} \right) \right] - y_{m} \right\}^{T} \mathbf{R}^{-1} \left\{ H_{m} \left[M_{m} \left(\mathbf{x} \right) \right] - y_{m} \right\}; \mathbf{R} = \mathbf{I}$											
$\overline{M}_{m,SURF} = \frac{1}{P_m} \sum_{p=p_{m,m}}^{P_m} M_m^p(\mathbf{x}) \overline{y}_{m,AIR} = \frac{1}{Q_m} \sum_{q=q_{0,m}}^{Q_m} y_m^q \qquad \begin{array}{c} \text{Assumed only for this} \\ \text{demonstration} \end{array}$											
Two	Two Preprocessed Observation Sets:										
					5005.						
	m	n _i	n _f	j	j	k	[BC]				
Ц	m 36<	n _i 281.000	n _f 1240.000	17,746353149414	j 76.181304931641	k 1.0000000000000	[BC] 1.149e-01				
VE	m 36≪ 37	n _i 281.000 281.000	n _f 1240.000 1240.000	17,746353149414 70.141807556152	j 76.181304931641 11.226648330688	k 1.000000000000 1.0000000000000	[BC] 1.149e-01 1.857e-01				
ROVE	m 36 37 38	n _i 281.000 281.000 241.000	n _f 1240.000 1240.000 1200.000	17,746353149414 70.141807556152 58.793373107910	j 76.181304931641 11.226648330688 32.409439086914	k 1.000000000000 1.000000000000 1.00000000	[BC] 1.149e-01 1.857e-01 3.750e-02				
IPROVE	m 36< 37 38 39	n _i 281.000 281.000 241.000 3161.000 3161.000	n _f 1240.000 1240.000 1200.009 4120.000	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422	k 1.000000000000 1.000000000000 1.00000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01				
IMPROVE	m 36< 37 38 39 40 41	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000	n _f 1240.000 1240.000 1200.009 4120.000 4120.000 4080.000	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924	k 1.000000000000 1.000000000000 1.00000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02				
IMPROVE	m 36 37 38 39 40 41 2641	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000	n _f 1240.000 1240.000 1200.000 4120.000 4120.000 4080.000 1008.111	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265	k 1.000000000000 1.00000000000 1.00000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01				
S- IMPROVE	m 36 37 38 39 40 41 2641 2642	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000 1008.000 1008.111	n _f 1240.000 1240.000 1200.000 4120.000 4120.000 4120.000 1008.111 1008.222	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031 35.693733215332	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265 17.304485321045	k 1.000000000000 1.00000000000 1.00000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01 7.801e-02				
TS- IMPROVE B	m 36 37 38 39 40 41 2641 2642 2643	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000 1008.000 1008.111 1008.222	n _f 1240.000 1240.000 1200.009 4120.000 4120.000 4080.000 1008.111 1008.222 1008.333	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031 35.693733215332 23.672988891602	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265 17.304485321045 17.241428375244	k 1.000000000000 1.00000000000 1.0000000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01 7.801e-02 8.249e-02				
ACTS- IMPROVE ARB	m 36 37 38 39 40 41 2641 2642 2643 2644	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000 1008.000 1008.111 1008.222 2527.333	n _f 1240.000 1240.000 1200.007 4120.000 4120.000 4080.000 1008.111 1008.222 1008.333 2527.444	17.746353149414 10.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031 35.693733215332 23.672988891602 34.414424896240	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265 17.304485321045 17.241428375244 16.163387298584	k 1.000000000000 1.00000000000 1.0000000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01 7.801e-02 8.249e-02 1.796e-01				
ARCTS- IMPROVE CARB	m 36 37 38 39 40 41 2641 2642 2643 2644 2645	n _i 281.000 281.000 241.000 3161.000 3161.000 3121.000 1008.000 1008.111 1008.222 2527.333 2527.444	n _f 1240.000 1240.000 1200.009 4120.000 4120.000 4080.000 1008.111 1008.222 1008.333 2527.444 2527.556	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031 35.693733215332 33.672988891602 34.414424896240 34.368530273438	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265 17.304485321045 17.241428375244 16.163387298584 16.131366729736	k 1.000000000000 1.00000000000 1.0000000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01 7.801e-02 8.249e-02 1.796e-01 1.042e-01				
ARCTS- IMPROVE CARB	m 36 37 38 39 40 41 2641 2642 2643 2644 2645 2646	n; 281.000 281.000 241.000 3161.000 3161.000 3121.000 1008.000 1008.111 1008.222 2527.333 2527.444 2527.556	n _f 1240.000 1240.000 1200.009 4120.000 4120.000 4080.000 1008.111 1008.222 1008.333 2527.444 2527.556 2527.667	17.746353149414 70.141807556152 58.793373107910 40.150882720947 25.215013504028 63.426769256592 35.719543457031 35.693733215332 23.672988891602 34.414424896240 34.368530273438 34.312656402588	j 76.181304931641 11.226648330688 32.409439086914 9.093823432922 43.165985107422 35.204486846924 17.366888046265 17.304485321045 17.241428375244 16.163387298584 16.131366729736 16.110553741455	k 1.000000000000 1.00000000000 1.0000000000	[BC] 1.149e-01 1.857e-01 3.750e-02 3.861e-01 6.785e-01 9.070e-02 1.202e-01 7.801e-02 8.249e-02 1.796e-01 1.042e-01 9.411e-02				

Cost Function & Chem Obs.

$$J = \sum_{m}^{M} \{ H_m [M_m (\mathbf{x})] - y_m \}^T \mathbf{R}^{-1} \{ H_m [M_m (\mathbf{x})] - y_m \}; \quad \mathbf{R} = \mathbf{I}$$

$\overline{M}_{m,SURF} = \frac{1}{P_m} \sum_{p=p_{0,m}}^{P_m} M_m^p(\mathbf{x}) \quad \overline{y}_{m,AIR} = \frac{1}{Q_m} \sum_{q=q_{0,m}}^{Q_m} y_m^q$

Two Preprocessed Observation Sets:

	m	n _i	n _f	i	j	k	[BC]
PROVE	36	281.000	1240.000	17.746353149414	76.181304931641	1.000000000000	1.149e-01
	37	281.000	1240.000	70.141807556152	11.226648330688	1.000000000000	1.857e-01
	38	241.000	1200.000	58.793373107910	32.409439086914	1.000000000000	3.750e-02
	39	3161.000	4120.000	40.150882720947	9.093823432922	1.000000000000	3.861e-01
N	40	3161.000	4120.000	25.215013504028	43.165985107422	1.000000000000	6.785e-01
Π	41	3121.000	4080.000	63.426769256592	35.204486846924	1.0000000000000	9.070e-02
	2641	1008.000	1008.111	35.719543457031	17.366888046265	4.452124834061	1.202e-01
ARCTS- CARB	2642	1008.111	1008.222	35.693733215332	17.304485321045	4.621666073799	7.801e-02
	2643	1008.222	1008.333	35.672988891602	17.241428375244	4.776512444019	8.249e-02
	2644	2527.333	2527.444	34.414424896240	16.163387298584	1.000000000000	1.796e-01
	2645	2527.444	2527.556	34.368530273438	16.131366729736	2.202630057931	1.042e-01
	2646	2527.556	2527.667	34.312656402588	16.110553741455	3.223917886615	9.411e-02

Cost Function & Chem Obs.

$$J = \sum_{m}^{M} \{H_m[M_m(\mathbf{x})] - y_m\}^T \mathbf{R}^{-1} \{H_m[M_m(\mathbf{x})] - y_m\}; \quad \mathbf{R} = \mathbf{I}$$

$$\overline{M}_{m,SURF} = \frac{1}{P_m} \sum_{p=p_{0,m}}^{P_m} M_m^p(\mathbf{x}) \quad \overline{y}_{m,AIR} = \frac{1}{Q_m} \sum_{q=q_{0,m}}^{Q_m} y_m^q$$

Assumed only for this demonstration

Two Preprocessed Observation Sets:

	m	n _i	n _f	i	j	k	[BC]
APROVE	36	281.000	1240.000	17.746353149414	76.181304931641	1.0000000000000	1.149e-01
	37	281.000	1240.000	70.141807556152	11.226648330688	1.0000000000000	1.857e-01
	38	241.000	1200.000	58.793373107910	32.409439086914	1.0000000000000	3.750e-02
	39	3161.000	4120.000	40.150882720947	9.093823432922	1.0000000000000	3.861e-01
	40	3161.000	4120.000	25.215013504028	43.165985107422	1.0000000000000	6.785e-01
	41	3121.000	4080.000	63.426769256592	35.204486846924	1.0000000000000	9.070e-02
	2641	1008.000	1008.111	35.719543457031	17.366888046265	4.452124834061	1.202e-01
ARCTS- CARB	2642	1008.111	1008.222	35.693733215332	17.304485321045	4.621666073799	7.801e-02
	2643	1008.222	1008.333	35.672988891602	17.241428375244	4.776512444019	8.249e-02
	2644	2527.333	2527.444	34.414424896240	16.163387298584	1.0000000000000	1.796e-01
	2645	2527.444	2527.556	34.368530273438	16.131366729736	2.202630057931	1.042e-01
	2646	2527.556	2527.667	34.312656402588	16.110553741455	3.223917886615	9.411e-02

Model Demonstration

Time Period

• Jun 20 00Z to Jun 27 09Z, 2008 •

Observations

- Jun 20, 23, 26 (IMPROVE)
 Daily avg. @ ~40 sites
- Jun 20, 22, 24, 26 (DC-8)
 - Single Particle Soot
 Photometer (SP2)
 - 10 sec sample rate
 - 0.01µg/m³ measurement limit
 - 10% accuracy

Adjoint Model Setup

- WRF V3.5
- 18km 79 x 79 x 31 levels
- I.C.'s & B.C.'s MET: 32km NARR Reanalysis CHEM: spun up from Jun 15, [BC]_{bound}=0.01µg/m³
- GOCART Aerosols
- NEI2005 Anthro. Emissions (4km)
- FINN BB Emissions (1km) w/ plumerise
- ACM2 PBL Mixing (7)
- Pleim-Xiu SFCLAY (7)
- No LSM \rightarrow No dry deposition
- No Microphysics
- No Cumulus scheme
- No LW or SW Radiation

Cost Function Evaluation

Spatially Aggregated Sensitivities

Temporally Aggregated Sensitivities

Temporally Aggregated Sensitivities

Next Steps

- Incorporate more AD and TL pieces into WRFPLUS
 - Cumulus Convection (shallow possible too?)
 - Radiative feedbacks
 - Mix-activate for aerosol-cloud interactions
 - Dust
 - Observation Operators
 - AOD & AAOD diagnostic
 - 3D spatial interpolation for in-situ observations
- Tune the PBL, including adding more grid levels
- Investigate which SFCLAY and LSM schemes work best in forward model
- 4DVar Data Assimilation

References

Koch, D. and Schulz, M. and Kinne, S. and McNaughton, C. and Spackman, J. R. and Balkanski, Y. and Bauer, S. and Berntsen, T. and Bond, T. C. and Boucher, O. and Chin, M. and Clarke, A. and De Luca, N. and Dentener, F. and Diehl, T. and Dubovik, O. and Easter, R. and Fahey, D. W. and Feichter, J. and Fillmore, D. and Freitag, S. and Ghan, S. and Ginoux, P. and Gong, S. and Horowitz, L. and Iversen, T. and Kirkevåg, A. and Klimont, Z. and Kondo, Y. and Krol, M. and Liu, X. and Miller, R. and Montanaro, V. and Moteki, N. and Myhre, G. and Penner, J. E. and Perlwitz, J. and Pitari, G. and Reddy, S. and Sahu, L. and Sakamoto, H. and Schuster, G. and Schwarz, J. P. and Seland, Ø. and Stier, P. and Takegawa, N. and Takemura, T. and Textor, C. and van Aardenne, J. A. and Zhao, Y. Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, 2009.

W.C. Skamarock, Joseph B. Klemp, Jimy Dudhia, David O. Gill, Dale M. Barker, Michael E. Duda, Xiang-Yu Huang, Wei Wang, and Jordan G. Powers. *A Description of the Advanced Research WRF Version 3.* NCAR Technical Note. Boulder, Colorado, USA: National Center for Atmospheric Research, Mesocale and Microscale Meteorology Division, June 2008.

G. A. Grell et al., "Fully coupled 'online' chemistry within the WRF model," *Atmospheric Environment*, vol. 39, no. 37, pp. 6957–6975, 2005.

Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson, J. R., and Fisher, J. A.: The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212, doi:10.5194/ acp-10-5191-2010, 2010.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625-641, doi:10.5194/gmd-4-625-2011, 2011.

Jun 22, 2008 Emissions

NEI2005 Anthropogenic Emissions

FINN Biomass Burning Emissions

BC Biomass Emissions Diurnal Cycle

Standalone G-F Convection Verification

Code Modifications (not up to date)

NEW TL FILES

chem/chem_driver_tl.F chem/mechanism_driver_tl.F chem/aerosol_driver_tl.F chem/emissions_driver_tl.F chem/ module_emissions_anthropogenics_tl.F chem/module_gocart_aerosols_tl.F chem/module_gocart_chem_tl.F

NEW AD FILES

chem/chem_driver_ad.F chem/mechanism_driver_ad.F chem/aerosol_driver_ad.F chem/emissions_driver_ad.F chem/ module_emissions_anthropogenics_ad.F chem/module_gocart_aerosols_ad.F chem/module_gocart_chem_ad.F

MODIFIED FILES

chem/chem_driver.F chem/mechanism_driver.F chem/aerosol_driver.F chem/emissions_driver.F chem/ module_emissions_anthropogenics.F chem/module_add_emiss_burn.F chem/module_plumerise1.F chem/chemics_init.F chem/chemics_init.F chem/module_input_chem_data_tl.F

chem/depend.chem chem/Makefile

share/solve_interface.F
share/mediation_pertmod_io.F
share/mediation_integrate.F
share/module_adtl_grid_utilities.F

main/real_em.F

main/module_wrf_top.F main/depend.common

Registry/Registry.EM_CHEM Registry/registry.chemplus Registry/registry.wrfplus Registry/Registry.EM_COMMON

frame/module_integrate.F

dyn_em/start_em.F
dyn_em/depend.dyn_em
dyn_em/module_first_rk_step_part1_tl.F
dyn_em/module_em_tl.F
dyn_em/solve_em_tl.F
dyn_em/start_em_tl.F

dyn_em/module_first_rk_step_part1_ad.F
dyn_em/module_em_ad.F
dyn_em/solve_em_ad.F
dyn_em/start_em_ad.F