Developing the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) Physics to Better Perform Across the Grey Zone

> Joseph Olson Georg Grell John Brown

NOAA Earth System Research Laboratory Boulder, CO

NWP Development at NOAA-ESRL

RAP/HRRR

Motivation/Outline

- 1. RAP/HRRR physics need to adapt to changing model resolutions.
 - Overview of RAP/HRRR physics, including new developments not yet in operational NCEP runs.
- 2. Test Case: Grey Zone Project
 - Organized by the U.K. Met Office with many participants from around the world.
 - Cold-air outbreak case over N. Atlantic.
 - Primarily shallow-cumulus regime with very little or no deep convection.
- 3. Sensitivity tests to improve cloud structures

Model Configuration

	RAP (13 km)	HRRR (3 km)		
Model version	WRFv3.5.1	WRFv3.5.1		
LSM	RUC 9-level	RUC 9-level		Modified to
Surface layer	MYNN (M-O-based)	MYNN (M-O-based)	+	include explicit mixing of qc and qi; Reduced Ri _c to
PBL	MYNN level 2.5	MYNN level 2.5		
SW Radiation	RRTMG	RRTMG		
LW Radiation	RRTMG	RRTMG		~20
Microphysics	Thompson	Thompson		New:
Microphysics Deep Convection	Thompson Grell 3D (G3)	Thompson 	-	New: Grell-Freitas
Microphysics Deep Convection Shallow Convection	Thompson Grell 3D (G3) Grell	Thompson 	↓	New: Grell-Freitas scale-aware convective
Microphysics Deep Convection Shallow Convection Time step	Thompson Grell 3D (G3) Grell 60 s	Thompson 20 s	+	New: Grell-Freitas scale-aware convective schemes
Microphysics Deep Convection Shallow Convection Time step Radiation time step	Thompson Grell 3D (G3) Grell 60 s 10 min	Thompson 20 s 5 min		New: Grell-Freitas scale-aware convective schemes
Microphysics Deep Convection Shallow Convection Time step Radiation time step Vertical levels	Thompson Grell 3D (G3) Grell 60 s 10 min 51 levels (50 layers)	Thompson 20 s 5 min 51 levels (50 layers)	↑	New: Grell-Freitas scale-aware convective schemes Double levels below 2 km

RAP/HRRR

Grell-Freitas Convective Schemes

Deep-Cu Scheme (Grell and Freitas 2014, ACP; already in v3.6)

- Aerosol-aware
- Stochastic approach adapted from the Grell-Devenyi scheme
- Scale-aware: transitions to shallow-cumulus scheme as grid spacing decreases:
 - ♦ Arakawa et al.'s (2011, ACP) fractional areal coverage approach.
 - Parameterized convection becomes much shallower cloud tops near 800 mb (down from 200-300 mb).
 - \diamond Tendencies become very small, practically shutting off below 5 km grid spacing.

Shallow-Cu Scheme (manuscript upcoming; likely in v3.6.1)

- Scale-aware mass-flux control from Honnert et al. 2011 (JAS)
 Similarity based on TKE in entrainment/cloud layer
- Non-precipitating; currently mixing only q_v and θ
- Produces sub-grid q_c and q_i for coupling to LW and SW schemes.
- Weighted average of 3 different closures:

♦ BL quasi-equilibrium, CAPE, and moist static energy.

RAP/HRRR

Tapering of Shallow-Cu Scheme

• Based off of Honnert et al. (2011, JAS):

 \diamond TKE partition in the entrainment layer

Figure 5 (a) $0.85 \le \frac{z}{h} \le 1.1$

• Other method will be tested (i.e., Shin and Hong 2013, JAS).

RAP/HRRR

Grey Zone Project

The Grey Zone Project (headed by UK Met Office) aims to systematically explore convective transport and cloud processes in NWP models at resolutions ranging from 1 to 16 km.

- For each set of the LAM simulations (at grid spacings of 1, 2, 4, 8, 16 km), two permutations were run:
 - 1. GF deep-cu scheme **OFF** GF shallow-cu scheme **OFF**.
 - GF deep-cu scheme ON GF shallow-cu scheme ON.
- 36 hour simulations are done using ECMWF analyses beginning at 12 UTC 30 Jan 2010, and used every 6h to generate LBCs for the coarsest domains.
- Two set of nested domains are used:
 - 16-4-1 km grids
 - 8-2 km grids

CONTOUR FROM 980 TO 1024 BY 4

Evolution of BL clouds (NoCu)

Comparison of integrated qc & qi

Mean Profile Comparisons

Mean Profiles over the transition region for hrs 23-27

- Overall differences between convective (DpSh) and nonconvective (NoCu) simulations show that the extra mixing from the shallow-cu scheme erodes the cloud/transition layer, which:
 - Increases the coupling between BL and free troposphere.
 - Warms the BL.
 - Increases the wind speeds in the BL.
 - Moistens the top of the cloud layer.

Eddy Diffusivity

 $K_{\phi} = S_{\phi} (2^* TKE)^{1/2} I_m$

- Eddy diffusivities/viscosities decrease by a factor of 2 from 16 to 1 km.

 ♦ Largest decrease between 1 and 2 km.
- Some of this reduction is seen in all three components (S_{ϕ} , *TKE*, and mixing length), but the largest reduction is found in the stability functions (S_h and S_m).

Behavior of Sh/Dp Cu schemes

Mean Profiles over the convective region for hrs 23-27

- The deep-cu scheme was only active off the coast of Norway, but tendencies were very small for dx < 8 km. More gradual transition found in Grell and Freitas (2014).
- The shallow-cu scheme produces smallest tendencies at higher resolutions, with heating maxima (at dx = 1km) ~50% less than that at dx = 16, 8 and 4 km.
- Scale aware shallow-cumulus will be implemented in WRF-ARWv3.6.1

RAP/HRRR

Summary Part I (Cu on/off)

- Developmental RAP/HRRR physics quantitatively reproduces the transition of stratus to open-cellular convection at 4 km grid spacing (HRRR scales), however:
 - Clouds were trapped in layers at low resolutions (16 & 8 km).
 - Stratus clouds too broken up at high resolutions (2 & 1 km) and open-cellular structures were too small.
- The GF deep-cu scheme (correctly) shuts off below 8 km, but there was not much convection to test this scheme.
- The GF shallow-cu scheme begins to taper off at dx = 2-3 km with a mass flux tapered off 50% near dx = 1 km.
- The MYNN PBL scheme appears to taper itself off with increasing resolution, presumably due to reduced dynamic instability by resolved-scale mixing.
 - Eddy diffusivity at 1km was about 1/2 that at 16 km.
 - Tapering was largest between 2 and 1 km.
 - TKE was smaller and maxima were lowered (more surface-based) at high resolutions.

Modifications to improve cloud structures across scales:

- Double vertical resolution below 2 km (51 -> 63 levels) to better resolve cloud layers.
- Hybrid PBL Height variability allow TKE-based PBLH more weight to allow more mixing in the cloud layer.
- Combined

RAP/HRRR

MYNN Hybrid-PBLH mod

Hybrid PBL height (z_i) definition in MYNN PBL scheme:

- 1. θ_v Definition: $z_{i_{-}\theta_v}$ is the height at which $\theta_v = \theta_{vsfc} + 0.5$.
- 2. TKE Definition: $z_{i_{TKE}}$ is the height at which the TKE falls below TKE_{max}/20. The two definitions are then blended according to stability $(z_{i_{\theta}\nu})$:

 $zi=z_{i_{TKE}} * (1.-wt) + z_{i_{\theta}v} * wt$ wt=.5*TANH(($z_{i_{\theta}v} - Z_{SBL}$)/(2 Z_{SBL})) + .5 Z_{SBL} is changed from 200 m to 500 m – to get more variability

Improvements with PBL mods

16°W 14°W 12°W 10°W 8°W

 $\Delta x = 2 \text{ km}$ $\Delta x = 1 \text{ km}$ $\Delta x = 4 \text{ km}$ $\Delta x = 16 \text{ km}$ $\Delta x = 8 \text{ km}$ Cu off, ShCu off, Control kg m⁻² 66°N S4°N 0.5 0.05 0.005 58°N 58°N 0.0005 16°W 14°W 12°W 10°W 8°W 6°W 4°W 2°V 16°W 14°W 12°W 10°W 8°W 6°W 4°W 2°V 16°W 14°W 12°W Cu off, ShCu off, PBL mods kg m⁻² 0.5 0.05 0.005 0.0005

2°\ 16°W 14°W 12°W 10°W 8°W 6°W 4°W 2°

et al (2013).

Combined Improvements

et al (2013).

ka m⁻²

0.5

0.05

0.005

0.0005

kg m⁻²

0.5

0.05

0.005

0.0005

RAP (13 km) Rawindsone Verification over CONUS 6-HR forecasts valid at 00 UTC between 16-25 June 2014

RAP/HRRR

Summary Part II

- The combined impacts (PBLH mod + vertical resolution) improve the consistency of the cloud structures at high-resolutions but not at lower resolutions.
- New scale-aware GF deep- and shallow-cumulus schemes improve RAP temperature profiles over land.
- Future work:
 - Non-local (mass-flux, entrainment, cloud-top cooling) additions may be necessary for improved cloud structures. These features will probably require scale-dependent control.
 - Other regimes (deep convection and LLJ) need to be tested to see if these results are general.

Effects of Higher Vertical Resolution

Effects of 6th-Order Diffusion

kg m⁻²

0.5

0.05

0.005

kg m⁻²

0.5

0.05

0.005

0.0005