Representation of the Subgrid-Scale Turbulent Transport in Convective PBLs at Gray-Zone Resolutions

Hyeyum (Hailey) Shin¹ and Song-You Hong²

¹National Center for Atmospheric Research, Boulder, CO, USA ²Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

With acknowledgement to

Jimy Dudhia, Peggy LeMone, Sang-Hun Park (MMM/NCAR), Sungsu Park (CGD/NCAR), Yign Noh (YonSei Univ.)

NWP models and GCMs: $\Delta \sim O(10-100 \text{ km})$

△ >> /: Totally subgrid-scale (SGS) → Entirely parameterized.

At higher resolutions: $\Delta \sim O(0.1-1 \text{ km})$

$\Delta \sim I$: Partly resolved, and partly parameterized.

"GRAY ZONE"

The GRAY ZONE of the SGS turbulence model

FROM "The theoretical view" (Wyngaard 2004)

Two traditional modeling methods of turbulent flows according to the ratio Δ/I

FROM "The theoretical view"

Two traditional modeling methods of turbulent flows according to the ratio Δ/I

To "A practical view"

Simulations in the gray zone show **two opposite problems**

FIG. 1. Sketch of a convective updraft embedded in a turbulent eddy structure.

Figure is taken from Siebesma et al. (2007, JAS)

To "A practical view"

Simulations in the gray zone show two opposite problems according to the SGS model used

(Honnert et al. 2011; LeMone et al. 2013; Ching et al. 2014)

With the nonlocal term

(e.g., nonlocal PBL schemes)

→ Overestimated SGS transport
 → Excessive diffusion

➔ Too weak resolved motions

Without it

(local PBL schemes; LES SGS)

Underestimated SGS transport +

Remaining instability

Too strong resolved motions -

For $\Delta = 1 \text{ km}$; vertical velocity, over 16 km² domain

Taken from Honnert et al. (2011)

To "A practical view"

Simulations in the gray zone show **two opposite problems according to the SGS model used** (Honnert et al. 2011; LeMone et al. 2013; Ching et al. 2014)

For Δ = 1 km; vertical velocity, over 16 km² domain

Taken from Honnert et al. (2011)

Essentially, the question is

How to decrease the parameterized energy by handling the nonlocal term, while leaving an accurate amount of resolvable energy for model dynamics?

In this study,

1) **Resolution dependency** of the SGS nonlocal transport in the GZ

2) **Its representation** for the CBL in the GZ : A SGS model <u>*"forced"*</u> to be scale-aware

Resolution dependency of the SGS nonlocal vertical transport

Construction of the reference data

1. Benchmark LES for CBLs: $\Delta_{LES} = 25 \text{ m}$ and D = 8 km.

Ching et al. (2010); Honnert et al. (2011); Dorrestijn et al. (2013); Shin and Hong (2013)

Construction of the reference data

2. Through spatial filtering, GS and SGS transports are calculated for $\Delta_{\text{LES}} < \Delta < D$.

Ching et al. (2010); Honnert et al. (2011); Dorrestijn et al. (2013); Shin and Hong (2013)

Construction of the reference data

3. Through conditinal sampling, the SGS transport is decomposed into the nonlocal transport (via strong updrafts) and local transport (via remaining small turbulence eddies).

Representation of the SGS vertical transport in the CBL at the GZ resolutions

Evaluations

Idealized CBL case

$\overline{w'\theta'}_{SFC}$	U_{g}	<u>w</u>	<u>u</u> .	Zi	τ.	L_{MO}
(K m s ⁻¹)	(<u>m</u> s ⁻¹)	(<u>m</u> s ⁻¹)	(<u>m</u> s ⁻¹)	(m)	(s)	(m)
0.20	10	1.864	0.518	996.98	535	-53.65

Experimental setup

	Vertical SGS	Horizontal SGS	Grid size (m)	No. of grids	Domain size (km²)
Benchmark LES	3D TKE	3D TKE	25	320 ²	82
Reference (REF)	Filtered fi	rom the LES	250, 500, 1000	32 ² ,16 ² , 8 ²	82
NEW	NEW	3D TKE	250, 500, 1000	32 ²	##8 ² , 16 ² , 32 ²
YSU	YSU	3D TKE	250, 500, 1000	32 ²	##8 ² , 16 ² , 32 ²

Vertical heat transport profiles

The NEW and YSU well follow the reference transport, in terms of the total transport.

Vertical heat transport profiles

Vertical heat transport profiles

Energy spectrum for w

 NOTE: The reference spectrum is filtered by a 6-th order numerical filter for a better comparison with the NEW/ YSU simulations (S.-H. Park, personal communication), since the simulations affected by a numerical diffusion due to the 5-th order advection scheme used (Skamarock 2004).

Energy spectrum for w

Energy spectrum for w

Summary & Discussions

In a practical view:

"How to decrease the parameterized energy by handling the NL term?"

A parameterization fit to the reference is introduced and tested for an ideal CBL case.

✓ Improvement in

mean profiles, resolved-scale/SGS partition, resolved energy.

- ✓ However, the spin-up problem and insufficient energy as ∆ is larger: due to the "forced (prescribed)" profile, which is fixed for the forcing.
- Moreover, Δ functions and numerical const. used in our fitting depend on height, variable, CBL stability (u_{*}/w_{*}) (Honnert et al. 2011; Shin and Hong 2013).

Thank you! Questions and comments?

Already the end of 15 min? (I hope not!): hshin@ucar.edu

Methods

(1) Construction of the 'true' data for $50-4000 \text{ m} \Delta$ Cheng et al. (2011) Cheng et al. (2010)

Turbulent vertical transport over the whole domain, for Δ grids

Dorrestijn et al. (2012)

Methods

(2) Benchmark large-eddy simulations for four CBLs

Four cases

Case	<i>ẃθ</i> ′₀ (K m s⁻¹)	<i>U_g</i> (m s⁻¹)	u∗/w∗	-z _i /L _{MO}
BT	0.20	0	0.097	430.31
BF	0.20	10	0.278	18.58
SW	0.05	10	0.417	5.01
SS	0.05	15	0.538	2.21

- The WRFV3.2.1 model (non-hydrostatic version)
- SGS parameterization: Deardorff (1980) with correction factor for the deviation from an isotropic grid system [Scotti et al. (1993)]
- Domain and resolution: Over 8 km×8 km×3.5 km domain

```
[Δ =(Δx=Δy)=25 m, 12 m~Δz~35 m]
```

• Initial profiles: $\theta = \begin{cases} 300 \text{ K} & : 0 < z \le 925 \text{ m} \\ 300 \text{ K} + (z - 925 \text{ m}) \times 0.0536 \text{ K} \text{ m}^{-1} & : 925 < z \le 1075 \text{ m} \\ 308.05 \text{ K} + (z - 1075 \text{ m}) \times 0.003 \text{ K} \text{ m}^{-1} & : z > 1075 \text{ m} \end{cases}$

Comparison between non-local and local transport

Decomposition of vertical transport

$$\langle w'\phi' \rangle = \langle w'\phi' \rangle^{R(\Delta)} + \langle w'\phi' \rangle^{S(\Delta)}$$

= $\langle w'\phi' \rangle^{R(\Delta)} + K^{-1} \sum_{k} \left(\overline{w''\phi''}^{\Delta_{k}} + \overline{f^{w\phi}}^{\Delta_{k}} \right)$

For each Δ_k

Siebesma and Cuijpers (1995), Siebesma et al. (2007)

$$\overline{w''\phi''}^{\Delta_{k}} = J^{-1}\sum_{j} \left(w''_{j,k} \phi''_{j,k} \right) = \left[a^{\Delta_{k}} (1 - a^{\Delta_{k}}) (w^{\Delta_{k}}_{cs} - w^{\Delta_{k}}_{e}) (\phi^{\Delta_{k}}_{cs} - \phi^{\Delta_{k}}_{e}) \right] + \left[a^{\Delta_{k}} \overline{w''\phi''}^{\Delta_{k},cs} + (1 - a^{\Delta_{k}}) \overline{w''\phi''}^{\Delta_{k},e} \right]$$

$$non-local vertical transport by strong updrafts of the organized structures within the organized structures wit$$

Domain-averaged temperature profiles

 Improvement in the entrainment zone: mainly due to the new profile (linear), rather than the resolution-dependency function.

Momentum transport & Mean wind profiles

YSU

-Ó.1

ġ

10

Ò

Resolution dependency

Resolved (red) + SGS (blue) = Total (black)

✓ Improvement in the partition between the **RS/SGS**.

Resolution dependency

Resolved (red) + SGS (blue) = Total (black)

Resolved w at 0.5z_i

• Resolved fields – w at 0.5z_i

