EPA

Towards the next generation integrated

meteorology and atmospheric chemistry model

Jonathan Pleim, Rohit Mathur, Martin Otte, Jia Xing, Chris

Nolte, David Wong, Rob Gilliam, Sergey Napelenok, Brian
Eder, Robin Dennis

United States Environmental Protection Agency



wEPA A brief history of AQ modeling

Eulerian grid chemical transport models

— Emission, advection, diffusion, chemistry, deposition
First generation AQ models - e.g. UAM; ROM

— Gas-phase photochemistry
— Single mixed layer with diurnal evolution, another layer aloft

— Meteorology interpolated from observations
Second generation - e.g. RADM,ADOM,STEM

— Multi-layer terrain following coordinates

— Meteorology from prognostic model (e.g. MM4)

— Include cloud processes — convective transport, aq chem, wet dep
Third generation — e.g. WRF-Chem,WRF-CMAQ, GEM-MACH

— Integrated or coupled Met — Chem
— Include aerosol with feedback to meteorology



EPA Next Gen AQ model

Need AQ modeling at Global to Continental to Regional to Urban scales

— Current systems using cascading nests is cumbersome
— Duplicative modeling in overlap regions
— Interpolation errors at boundaries

Tighter AQ standards require global modeling:

— Inter-continental transport, important for both Ozone and PM
— Stratospheric ozone
— Marine chemistry

Earth system Linkages

— Greenhouse gases
— Nitrogen, carbon cycling
— AQ — Climate interactions

— Eco, hydro linkages



SEPA

Link to Ecosystem Models

of Mexico hypoxia study
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wEPA Hemi as LBC for CONUS 12 km

WRF-CMAQ max 8-hr average ozone on June 8,
Daily M: 2014 3 (ppb): 20140608
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Hourly LBCs from WRF-CMAQ Monthly average LBCs from GEOS-Chem
Hemispheric run

Using 108 km hemispheric WRF-CMAQ improves ozone simulation especially in Texas and
Canada compared to monthly average static LBCs derived from global model (GEOS-Chem)
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vEPA Vision

¢ Extend to global scales

— Single global mesh with seamless refinement to local scales
— Integrated chemistry, dynamics, physics
¢ Three configurations of flexible systems:

— On-line global variable grid (e.g. MPAS, OLAM)
— Online regional (WRF-AQ)
— Offline regional (redesigned CMAQ)
® Interoperability of as much model code as possible

— Gas, aerosol, aqueous in modular box
— Modules for biogenic emissions, dry dep/bidi, wind-blown dust,
photolysis, etc

¢ Transport in met models for online systems (adyv,
diffusion) A,\gg% Sesssatas:
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— Ensure mass conservation NMQM/%;A i

— Consistency with met parameters

— Minimize numerical diffusion and dispersion




o EPA Prototype: OLAM-Chem

The Ocean Land Atmosphere Model (OLAM)

— A global general circulation/climate model with flexible mesh refinement technique
that works on either triangular or hexagonal grids

OLAM-Chem

— Martin Otte has added CMAQ gas-phase chemistry, photolysis, emissions, plume rise,
deposition, and convective cloud mixing

Initial testing of OLAM-Chem

— Simulation starting on April |,2006

— Hexagonal grid from 108 km to 12.5 km
— 46 vertical layers

— Emissions from EDGAR

— CBO05 chemical mechanism

— Kain-Fritsch convective clouds

— ACM2 PBL for met and chem

— RRTMG Radiation




EPA \ Ozone at 00Z on April 29,2006

Surface 3 km altitude 8 km altitude
0-120 ppb 0 — 140 ppb 0 — 240 ppb

¢ Example of ozone concentrations at three altitudes

— Top ozone BC from CFSR analysis



Surface level NO, and CO

CO

Note the coarse resolution in South America and much finer resolution in
North America




<EPA Community development

Initial discussions among EPA;, NCAR, NOAA, DOE

— Leverage diverse expertise across community
Multiple purposes:

— Air quality policy development and regulation

— Air quality forecasting

— Atmospheric chemistry research

— Climate modeling with short-lived climate forcers

— Earth system applications: coupled system for air, hydro, eco, ag, energy, etc...
Standardize model engineering for coupling chemical components to different
dynamics models

Initial steps: add chemistry to existing global models

— For example: MPAS-Chem, OLAM-Chem
Involve grant programs to foster development

— EPA STAR grants
— DOE Model development grants



SEPA Opportunities at EPA

® NRC Postdoc open until August |
® New Federal position soon

® Pleim.jon@epa.gov



wEPA N\ Extras



SEPA Hemispheric modeling

¢ Typically we run hemispheric WRF-CMAQ at
108 km grid resolution

— Hemispheric runs useful for global AQ analysis
including regional trends in concentrations

— Coupled Met—Chem model can also be used to
assess aerosol radiative effects and their trends
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\",EPA | Background O; and Source Contributions
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