
15th Annual WRF User’s Workshop
Mary Haley � CISL / Cindy Bruyère & Abby Jaye � NESL

June 23-27, 2014

Post-processing

WRF-ARW data

using NCL

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Four main goals
1.  Introduce you to NCL and WRF-NCL

2.  Get you familiar with WRF-NCL scripts

•  Opening and examining a WRF output data file

•  Reading and querying variables

•  Plotting variables

3.  Sneak in tips and information for existing users

4.  Tell you what’s new in V6.2.0 and future plans

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

A scripting language developed at NCAR
and tailored for the analysis and
visualization of geoscientific data

http://www.ncl.ucar.edu/

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Developed in NCAR/CISL in close
collaboration with CGD & MMM staff

•  Open source, binaries and source
available

•  Extensive NCL website,
hundreds of examples

•  Hands-on workshops
•  Well-supported

NCL

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

What is NCL?
•  A scripting language similar to Matlab, Python, IDL

•  Tailored to climate and weather sciences

•  Has variable types, “if-then-end if”, “do” loops,
arithmetic operators

•  F90-like array arithmetic that automatically ignores
missing values (where it makes sense)

•  Can call your own Fortran 77/90 or C routines

1.  Simple, robust file input/output

2.  Hundreds of data analysis routines

3.  Publication-quality graphics that are highly
customizable

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

NCL: File input and output
•  Data model based on netCDF model

(metadata describes data)

•  One function reads all supported data formats:
− NetCDF3, GRIB 1 and 2, HDF4, HDF5, HDF-EOS2,

HDF-EOS5, shapefiles, NetCDF4 (groups,
compound data, variable length arrays)

− Writes NetCDF3, NetCDF4, and HDF4

•  OPeNDAP-enabled client available

•  ASCII, binary (read and write)

•  “Never fear a data format”

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

NCL: Data analysis

•  Array-based math
•  Hundreds of functions

-  WRF-ARW specific functions
(“wrf_user_getvar” is one)

-  Spherical harmonics
-  Scalar and vector regridding
-  Vertical interpolation
-  EOFs

•  Many tailored to geosciences
•  Most automatically handle missing data
•  Can call C and Fortran routines - WRAPIT

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

NCL: Visualization

•  High-quality and customizable visualizations
•  Contours, XY, vectors, wind barbs, streamlines
•  Maps with common map projections
•  Handles data on rectilinear, curvilinear, and

unstructured grids (MPAS, triangular meshes)
•  Specialized scripts for meteograms, skew-T, wind

roses, histograms, cross section, panels
•  Suite of wrf_xxxx functions: simplifies

visualization for WRF-ARW data
•  Over 1,400 visualization “options”

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

NCL Training Workshops
-  First training workshop in 2000 (72 total, 1120 attendees)

-  4-5 local workshops a year
-  1-2 annual workshops at U.S. universities
-  One annual invited international workshop

-  Lectures taught by a scientist and a software engineer
-  Includes special lecture on various data formats used in

geosciences – lots of students working with WRF!
-  Four hands-on labs sessions; students encouraged to

bring their own datasets

Suite of analysis and
visualization functions
tailored for WRF-ARW

model data

WRF-NCL

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Included with NCL since 2006

•  Developed by staff in MMM

•  Maintained by MMM and CISL

•  Functions for calculating basic
diagnostics (wrf_user_getvar)

•  Functions for customized
visualizations

•  Website with lots of analysis and
visualization examples

•  Workshops and tutorials

WRF-NCL Overview

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Sample WRF-NCL visualizations

These are
called

“panel” plots

“Skew-T” plot or diagram

Wind barbs and contours

Hurricane
tracks

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/Examples/EXPERIMENTAL/
wrf_show_wps_som_namelist.htm

Use of
WPS

namelist

Wind roses

WRF “DBZ” and “HGT” data
Uses multiple color maps and transparency

Multiple color maps, 2’ topo data from
“ETOPO2_GLOBAL_2_ELEVATION.nc”

Multiple color maps, imported JPEG
image, and transparency

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

ESMF regridding
Regridding is the process of interpolating data from one
grid (rectangular, rectilinear, curvilinear, unstructured) to
another while preserving the qualities of the original data.

Same plots with the grid included

•  Interpolate the zonal
and meridional wind
components using
WRF-to-rectilinear
weights file

•  Compute divergence
on the rectilinear grid
using uv2dv_cfd

•  Interpolate the derived
divergence onto the
original WRF grid using
the rectilinear-to-WRF
weights file

NCL has support for
shapefiles, allowing you
to use the numerous free
shapefiles for adding your

own map outlines

The three types of shapefiles
supported by NCL:

Point – locations of cities,
 population data, etc

Line – rivers, roads, trails, etc

Polygon – counties, lakes, etc

Global Administrative Areas database (http://www.gadm.org) offers consistent
administrative boundaries at many levels. The level 0 database (nations) is good to

use for global or mesoscale results, level 1 is the first level of sub-national
administration (typically states/provinces and territories) while level 2 offers the second

level of administration and is potentially useful for high-resolution plots.

Using
shapefile
outlines to
mask data

Using
shapefile
outlines to
mask data

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Running an NCL script
•  Overview of an NCL script
•  Assigning values and doing simple

calculations
•  Converting types
•  Handling arrays and doing array

arithmetic
•  Metadata (including missing values)
•  Array subscripting

NCL language basics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

To “run” or “execute” an NCL script:
•  Assuming you have installed NCL…

•  Create an NCL script using an editor (emacs, vi, nedit,
etc) that contains NCL script commands, say,
“myfile.ncl”.

Use examples on WRF-ARW online tutorial for help!
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

•  Run the file on the command line with:

! !ncl myfile.ncl!

•  Look at resultant output data or view graphical file

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Syntax, types, metadata, functions, arrays

A lot of information will follow.

This is mainly to get you familiar with
NCL scripts, especially if you are
currently having to modify them

Retrieves WRF variable

begin/end are optional

Open the file

array arithmetic, like f90

Use print/printVarSummary for debugging

This is like doing an “ncdump –h”

Comments begin with “;”
Either on line by itself, or end of line

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!
!

begin  
 print(“Hello, world”)  
!
; Open a netCDF file and print its contents!
 f = addfile(“wrfout_d01_2000-01-24_12:00:00.nc”,”r”) 
 print(f)!
!
; Read a variable and print its info!
 slp = wrf_user_getvar(f,”slp”,0)!
 printVarSummary(slp)!
!

 wrf_smooth_2d(slp, 3) ; Smooth slp  
!

 td2 = wrf_user_getvar(f,”td2”,0) ; td2 in C!
 td_f = 1.8 * td2 + 32. ; Convert to F!
 td_f@description = “Surface Dew Point Temp” !
 td_f@units = “F”  
!
. . . Maybe do some plotting. . .  
end !

To run this script (“wrf.ncl”) on UNIX command line, type:

 ncl wrf.ncl

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Use “literals” to force type

; Explicit scalar assignment  
 
ndys = 30 ; integer  
 

x_f = 2983.599918 ; float!
 

pi = 3.14159265358979d ; double!
 

ll = 32676l ; long  
 

ishort = 10h ; short  
 
done = True ; logical (False)  
 

long_name = “Water Vapor” ; string!

Scalar variable assignment

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Mixing types
; Mixing types, “largest” type used  
i = 7/10 ; integer (i=0)  
x = 7/10. ; float (x=0.7)!
 

y = (22./7)/2d ; double (1.571428537368774)!
 

z = (i+5) * x ; float (z=3.5)!

; Use “+” for string concatenation  
s1 = “hello”  
s2 = “world”  
s3 = s1 + “, “ + s2 ; s3 = “hello, world”  
 
j = 2 ; Can mix strings and numbers  
s = “var_“ + (j+1) + “_f” ; s = “var_3_f”!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Type conversions

; Version 6.0.0 and earlier  
; Can’t change to “higher” type; use delete  
ff = 1.5e20 ; float  
ff = 1000 ; this is ok, still a float  
ff = 1d36 ; not okay, “type mismatch”  
delete(ff)  
ff = 1d36 ; now this is okay  
delete(ff)  
ff = (/”one”,”two”,”bob”/)!

; Version 6.1.0 and newer: use ‘:=‘to force  
ff = 1.5e20 ; float  
ff = 1000 ; this is ok, still a float  
ff := 1d36 ; now a “double”  
ff := (/”one”,”two”,”bob”/) ; array of strings!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Type conversions (cont’d)

; Can use conversion functions to  
; force “lower” type  
 

dx = 345.789d ; double  
fx = tofloat(dx) ; 345.789  
ix = tointeger(dx) ; 345  
istr = tostring(ix) ; “345.789000”!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Row major. . . like C/C++ (Fortran is column major)

•  Leftmost dimension varies the slowest,
rightmost varies fastest (this matters for speed)

•  Dimensions are numbered left to right (0,1,…)

•  Use “dimsizes” function to get dimension sizes

•  Indexes (subscripts) start at 0 (0 to n-1)

•  Use parentheses to access elements:

 dx = x(2) – x(1) ; 3rd value minus 2nd value  
!

 ; Assume Y is 3D (nx=10,ny=4,nz=2)!
 y1 = y(0,0,0) ; first value of a 3D array!
 yn = y(9,3,1) ; or y(nx-1,ny-1,nz-1)  

 ; last value of a 3D array!

Arrays

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; 1D float array, 3 elements  
lat = (/-80,0.,80/)!
 

; string array, 4 elements  
MM = (/”March”,”April”,”May”,”June”/)!

; string array with appended number (“Mar 01”,”Apr 01”…) 
MMDD = (/”Mar”,”Apr”,”May”,”Jun”/) + “ 01”!

; 3 x 2 double array  
z = (/(/1,2d/),(/3,4/),(/9,8/)/)!

Array assignment: (/. . ./)

; Create empty 3D double array, 10 x 64 x 128 
x = new((/10,64,128/),double)!

; “x” will be filled with default missing value  
; 9.969209968386869e+36!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; Generating random numbers  
x = random_uniform(-50,1000, (/10,20,30/))!

; Do not need “new” first! This is redundant 
x = new((/10,20,30/),float)  
x = random_uniform(-50,1000, (/10,20,30/))!

; Use “new” only if you have to subscript 
x = new((/10,20,30/),float)!

do i=0,9  
 x(i,:,:) = some calculation that returns 20x30 array  
end do  
!

Array assignment via functions

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; Very useful “where” function  
 q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5*z) 
!

Special functions for arrays

; “num”, “any”, “all”  
 

 npos = num (xTemp.gt.0.0) ; Count # values > 0  
 

 if (.not.any(string_array.eq.”hello world”)) then  
 do something  
 end if!
 

 if (all(xTemp.lt.0)) then  
 do something  
 end if!

; “ind” function, only on 1D arrays  
 ii = ind(pr.lt.500 .and. pr.gt.60)  
!

“where” is usually
more useful than “ind”

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Metadata
•  Metadata is information about variables or files.

•  In NCL variable model, metadata consists of three
things:

1.  Attributes – describes the file or variable
units, history, description, grid type, long name,
map projection, missing value

2.  Named dimensions – describes the dimensions
(“time”, “north_south”, “level”, “bottom_top”)

3.  Coordinate arrays – provides coordinate locations
of data (must be one-dimensional)

•  Metadata important for calculations, plotting, and
general information about data

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Metadata (continued)
•  WRF-ARW data doesn’t have traditional one-

dimensional (1D) coordinate arrays.

•  WRF lat/lon coordinates are generally 2D or 3D
variables on the file and called something like:

•  “XLAT”, ”XLONG”
•  “XLAT_U”, “XLONG_U”
•  “XLAT_V”, ”XLONG_V”

•  WRF variables on “d02” files should have a
“coordinates” attribute that tells you which variable
on the file represents latitude and longitude

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Metadata (continued)
•  The “_FillValue” attribute is a special one

indicating a variable’s missing value.

•  “missing_value” attribute not recognized by most
of NCL’s computational and plotting routines

•  Use tools like “ncdump -h” or “ncl_filedump” on a
NetCDF file to examine file

•  Missing values indicated with “-” in ncdump
output; NOT the case with “ncl_filedump”

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; Use “isatt” to test for an attribute first. 
if(isatt(uvmet,”units”)) then  
 print(“The units of uvmet are ‘” + uvmet@units + “’”)  
end if!

 The units of uvmet are ‘m s-1’  
!

File and variable attributes

; Use the “@” symbol to get at variable attributes too. 
uvmet = wrf_user_getvar(f, “uvmet”, 0)  
print(uvmet@units) ; “m s-1”  
print(uvmet@description) ; “u,v met velocity”!

; Use the “@” symbol to get at global file attributes. 

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
print(f@TITLE) ; “OUTPUT FROM WRF V2.1.2 MODEL”  
print(f@START_DATE) ; “2005-08-26_00:00:00”  
print(f@MAP_PROJ) ; 3  
!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; Can do arithmetic like Fortran 90  
 ch4 = ch4 * 1e6 ; convert to ppm, assign to same var  
 
 A = data_DJF - data_JJA ; data_DJF/data_JJA must be same size  
 
 zlev = (-7*log(lev/10^3)) ; evaluated as  
 ; (-7)*log(lev/(10^3))!

Arithmetic operations on arrays, like f90

•  May not need to loop over arrays to do calculations
•  Arrays need to be same size, but scalars can be used anywhere

; Use “conform” to promote an array  
; “Twk” is (time,lat,lon,lev), “ptp” is (lat,lon)  
 

 ptropWk = conform(Twk, ptp, (/1,2/)) ; time,lat,lon,lev  
!

Metadata not copied to A or zlev

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Array reshape and reverse

; Reshaping an array, assume T is 10 x 20 x 30  
 

 t1D = ndtooned(T) ; Convert to 1D array  
 t2D = onedtond(t1D, (/200,30/)) ; Convert to 200 x 30!

 t2D = reshape(T,(/200,30/)) ; Added in V6.1.0!

; Reversing dimensions of an array  
 

; Let W(Time, bottom_top_stag, south_north, west_east)  
 W = W(:,::-1,:,:) ; Reverses the level dimension!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Array Subscripting
•  Three kinds of array subscripting

1.  Index (uses ‘:’ and ‘::’)

2.  Coordinate (uses curly braces ‘{‘ and ‘}’)

3.  Named dimensions (uses ‘!’)

•  Most (all?) WRF-ARW data does not have coordinate
arrays, so can’t use method #2

•  You can mix subscripting types in one variable

•  Be aware of dimension reduction

•  Index subscripting is 0-based
(Fortran is 1-based, by default)

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Array index subscripting, : and ::

; Consider T(ntime x nlat x nlon)  
 t = T! ; copies metadata, don’t use T(:,:,:)  
 t = (/T/) ; doesn’t copy metadata  
 ; (_FillValue is retained)  
 
; The following creates 2D array “t”  
 t = T(0,:,::5) ; 1st time index, all lat, every 5th lon  
 ; (nlat x nlon/5)  
 
 t = T(0,::-1,:50) ; 1st time index, reverse lat,  
 ; first 51 lons (nlat x 51)  
 
 t = T(:1,45,10:20) ; 1st two time indices, 46th index of lat,  
 ; 11th-21st indices of lon (2 x 11)  
 
; To prevent dimension reduction  
 t = T(0,:,::5) ; nlat x nlon/5  
 t = T(0:0,:,::5) ; 1 x nlat x nlon/5!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

WRF files don’t have “.nc” suffix; must add here.

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
print(f)!

Opening and examining a WRF output file

Variable: f (file variable)!
!
filename: wrfout_d01_2005-08-27_00:00:00!
path: wrfout_d01_2005-08-27_00:00:00!
 file global attributes:!
 TITLE : OUTPUT FROM WRF V2.1.2 MODEL!
 START_DATE : 2005-08-26_00:00:00!
 SIMULATION_START_DATE : 2005-08-26_00:00:00!
 WEST-EAST_GRID_DIMENSION : 400!
 SOUTH-NORTH_GRID_DIMENSION : 301!
 BOTTOM-TOP_GRID_DIMENSION : 35!
 DX : 12000!
 DY : 12000!
 GRIDTYPE : C!
 DYN_OPT : 2!
 DIFF_OPT : 1 KM_OPT : 4!
 DAMP_OPT : 0!

print(f) results

global attributes

 KHDIF : 0!
 KVDIF : 0!
 MP_PHYSICS : 3!
 RA_LW_PHYSICS : 1!
 RA_SW_PHYSICS : 1!
 SF_SFCLAY_PHYSICS : 1!
 SF_SURFACE_PHYSICS : 1!
 BL_PBL_PHYSICS : 1!
 CU_PHYSICS : 1!
 WEST-EAST_PATCH_START_UNSTAG : 1!
 WEST-EAST_PATCH_END_UNSTAG : 399!
 WEST-EAST_PATCH_START_STAG : 1!
 WEST-EAST_PATCH_END_STAG : 400!
 SOUTH-NORTH_PATCH_START_UNSTAG : 1!
 SOUTH-NORTH_PATCH_END_UNSTAG : 300!
 SOUTH-NORTH_PATCH_START_STAG : 1!
 SOUTH-NORTH_PATCH_END_STAG : 301!
 BOTTOM-TOP_PATCH_START_UNSTAG : 1!
 BOTTOM-TOP_PATCH_END_UNSTAG : 34!
 BOTTOM-TOP_PATCH_START_STAG : 1!
 BOTTOM-TOP_PATCH_END_STAG : 35 !
 GRID_ID : 1!
 PARENT_ID : 0!
 I_PARENT_START : 0!
 J_PARENT_START : 0!
 PARENT_GRID_RATIO : 1!
 DT : 60!

print(f) results
(continued)

more global attrs

. . .!
 dimensions:!
 Time = 1 // unlimited!
 DateStrLen = 19!
 west_east = 399!
 south_north = 300!
 west_east_stag = 400!
 bottom_top = 34!
 south_north_stag = 301!
 bottom_top_stag = 35!
 ext_scalar = 1!
 soil_layers_stag = 5!
 variables:!
 character Times (Time, DateStrLen)!
!

 float LU_INDEX (Time, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XY !
 description : LAND USE CATEGORY!
 units : !
 stagger : !
!

 float U (Time, bottom_top, south_north, west_east_stag)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : x-wind component!
 units : m s-1!
 stagger : X!

print(f) results
(continued)

variable dimension names

variables

 float V (Time, bottom_top, south_north_stag, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : y-wind component!
 units : m s-1!
 stagger : Y!
!
 float W (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : z-wind component!
 units : m s-1!
 stagger : Z!
!
 float PH (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : perturbation geopotential!
 units : m2 s-2!
 stagger : Z!
!
 float PHB (Time, bottom_top_stag, south_north, west_east)!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : base-state geopotential!
 units : m2 s-2!
 stagger : Z!

print(f) results
(continued)

more variables

filename: wrfout_d03_2012-04-22_23_00_00
file global attributes:
 TITLE : OUTPUT FROM WRF V3.3.1 MODEL
 START_DATE : 2012-04-20_00:00:00
 SIMULATION_START_DATE : 2012-04-20_00:00:00
. . .

 dimensions:
 Time = 1 // unlimited
 south_north = 546
 bottom_top = 31
. . .

variables:
…

 float MAPFAC_UY (Time, south_north, west_east_stag)
 FieldType : 104
 MemoryOrder : XY
 stagger : X
 coordinates : XLONG_U XLAT_U

 float F (Time, south_north, west_east)
 FieldType : 104
 MemoryOrder : XY
 description : Coriolis sine latitude term
 units : s-1
 stagger :
 coordinates : XLONG XLAT

Example of wrfout_d03 file

 float XLAT_U (Time, south_north, west_east_stag)
 FieldType : 104
 MemoryOrder : XY
 description : LATITUDE, SOUTH IS NEGATIVE
 units : degree_north
 coordinates : XLONG_U XLAT_U

 float XLAT (Time, south_north, west_east)
 FieldType : 104
 MemoryOrder : XY
 description : LATITUDE, SOUTH IS NEGATIVE
 units : degree_north
 coordinates : XLONG XLAT

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Using “ncl_filedump” on UNIX command line

Don’t need to write a script to quickly look at a WRF file.
On the UNIX command line, type:

ncl_filedump –h!

ncl_filedump wrfout_d01_2005-08-27_00:00:00.nc | less!

ncl_filedump –v RAINC wrfout_d01_2005-08-27_00:00:00.nc  
!

Can use ncl_filedump on other files that NCL’s “addfile”
supports: GRIB 1 and 2, HDF4, HDF-EOS2, etc

ncl_filedump TES-Aura_L3-ATM-TEMP_r0000003459_F01_05.he5  
 

ncl_filedump z_tigge_c_rjtd_20061119120000_0072_sl_glob_prod.grb2  
 

ncl_filedump states.shp!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Two ways to read a variable off a file

1.  Use “->” syntax to directly read variables

2.  Use “wrf_user_getvar” function
– Developed to make it easier to get derived

variables
– Must load “WRFUserARW.ncl” script
– You can modify this script (more later)
– Can only use with WRF-ARW data

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

named dimensions

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
u = f->U  
printVarSummary(u)  
; print(u) ; Same as printVarSummary, but includes values!

Reading (and examining) a variable off a file (method 1)

Variable: u!
Type: float!
Total Size: 16320000 bytes!
 4080000 values!
Number of Dimensions: 4!
Dimensions and sizes: [Time | 1] x [bottom_top | 34] x [south_north
| 300] x [west_east_stag | 400]!
Coordinates: !
Number Of Attributes: 5!
 FieldType : 104!
 MemoryOrder : XYZ!
 description : x-wind component!
 units : m s-1!
 stagger : X!

printVarSummary(u) results

no coordinate arrays

variable attributes

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
slp = wrf_user_getvar(f,”slp”,0)  
printVarSummary(slp)!

Reading (and examining) a variable off a file (method 2)

Variable: slp!
Type: float!
Total Size: 478800 bytes!
 119700 values!
Number of Dimensions: 2!
Dimensions and sizes: [south_north | 300] x [west_east | 399]!
Coordinates: !
Number Of Attributes: 5!
 description : Sea Level Pressure!
 units : hPa!
 FieldType : 104!
 MemoryOrder : XYZ!
 stagger :!

printVarSummary(slp) results

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
slp = wrf_user_getvar(f,"slp",0)  
 

print(dimsizes(slp)) ; Print dimension sizes of slp  
print(min(slp)) ; Print minimum of slp  
print(typeof(slp)) ; Print type of slp  
print(getvaratts(slp)) ; Print attributes of slp!

Further querying a variable

300!
399!
973.2794!
float!
description!
units!
FieldType!
MemoryOrder!
stagger!

Demo
time?

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

WRF-NCL Functions
•  Two kinds:
−  Built-in - mainly functions to calculate diagnostics.

Seldom need to use these directly.

 slp = wrf_slp(z, tk, P, QVAPOR)  
!

−  “WRFUserARW.ncl” - developed to make it
easier to calculate derived variables and generate
plots, calls some built-in functions

 load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!
 slp = wrf_user_getvar(f,”slp”,time) ; internally calls  

 ; wrf_slp  
!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Can use NCL built-in functions, in place of wrf_user_getvar,
not always recommended!

 T = f->T(time,:,:,:)  
 P = f->P(time,:,:,:)  
 PB = f->PB(time,:,:,:)  
 QVAPOR = f->QVAPOR(time,:,:,:)  
 PH = f->PH(time,:,:,:)  
 PHB = f->PHB(time,:,:,:)  
 T = T + 300.  
 P = P + PB  
 QVAPOR = QVAPOR > 0.0 ; Set anything <= 0 to msg  
 PH = (PH + PHB) / 9.81  
 

 z = wrf_user_unstagger(PH,PH@stagger)  
 tk = wrf_tk(P , T)  
 slp = wrf_slp(z, tk, P, QVAPOR)!

WRF-NCL built-in functions

 slp = wrf_user_getvar(f,”slp”,time)!

Replace with single call

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

WRF-NCL “WRFUserARW.ncl” functions
wrf_user_getvar - Get fields from input file

ter = wrf_user_getvar(a,”HGT”,0)  
t2 = wrf_user_getvar(a,”T2”,-1)  
slp = wrf_user_getvar(a,”slp”,1)

Diagnostics
avo/pvo Absolute/Potential Vorticity
cape_2d 2D mcape/mcin/lcl/lfc
cape_3d 3D cape/cin
dbz/mdbz Reflectivity
. . .
omg Omega [C]
slp Sea level pressure
. . .
tv Virtual temperature [K]
tw Wet bulb temperature [C]
updraft_helicity Updraft helicity [m-2/s-2]
ua/va/wa Wind on mass points
uvmet/uvmet10 U/V components of wind rotated to earth coords
z/height Height

wrf_user_getvar
is user-modifiable!

(more later)

New in NCL
V6.2.0

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  wrf_user_list_times
Get list of times available in input file

times = wrf_user_list_times (f)!

•  wrf_user_unstagger
Unstaggers an array

ua = wrf_user_unstagger (U, “X”)  
ua = wrf_user_getvar(f,”ua”,time) !

!

•  wrf_map_overlays
Draws plots over a map background

map = wrf_map_overlays(a, wks, \!
 (/contour,vector/), pltres, mpres)!

Other WRF-NCL “WRFUserARW.ncl” functions

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  wrf_user_intrp3d
Interpolate horizontally to a given pressure or height level
Interpolate vertically (pressure/height), along a given line
tc_plane = wrf_user_intrp3d(tc, p, ”v”, (/30,25/), \  
 45., False)!

•  wrf_user_intrp2d
Interpolate along a given line
t2_plane = wrf_user_intrp2d(t2, (/12,10,25,45/), \  
 0., True)!

Other WRF-NCL “WRFUserARW.ncl” functions

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  wrf_user_ll_to_ij / wrf_user_ij_to_ll

Convert: lat/lon values to i/j index locations

locij = wrf_user_ll_to_ij (f, 100., 40., res)  
locll = wrf_user_ij_to_ll (f, (/10, 12/), \  
 (/40, 50/), res)

•  res@useTime - Default is 0
Set to a time index value if you want the reference
longitude/latitudes to come from a different time index -
only use this for moving nest output which has been
stored in a single file.

Other WRF-NCL “WRFUserARW.ncl” functions

Using
wrf_user_ll_to_ij

and
“where”

statement to
sub-select area

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Modifying wrf_user_getvar function
•  Copy the following file to your own directory:

“$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”

•  Edit your copy and look for line that starts with:

function wrf_user_getvar  

•  Before the lines:

 return(var)  
end  

Add these lines, replacing “newvar” as appropriate:

if(variable .eq. ”newvar”) then  
 . . .fill in code here. . .  
 return(newvar)  
end if

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Modifying wrf_user_getvar function (cont’d)
•  To use the new version of this function, you can do one

of two things:

1.  Load your modified script instead of the system one:

2.  Remove all but the modified “wrf_user_getvar” function from
your copy, rename the function (“wrf_user_getvar2”), and
rename the file (“my_new_script.ncl”). To use the new
function, you need to load the above script and your new
script:

load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
load “./my_new_script.ncl”!
 
xxx = wrf_user_getvar2(f,”XXX”,0)!

load “./WRFUserARW.ncl”  
xxx = wrf_user_getvar(f,”XXX”,0)!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  WRF-ARW online tutorial
http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm

•  NCL/WRF examples page
http://www.ncl.ucar.edu/Applications/wrf.shtml

NCL Home Page -> Examples -> WRF

•  Description of WRF-NCL functions
http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

NCL Home Page -> Functions -> Category -> WRF

Links for visualization scripts

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Step-by-step WRF-ARW visualizations

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

These are plot options, also known as “resources”

; Set some plotting resources!
res = True  
res@cnFillOn = True  
 

; These are special wrf_xxxx resources  
res@MainTitle = "GEOGRID FIELDS”  
res@ContourParameters = (/ 250., 3500., 100. /)  
contour = wrf_contour(f,wks,hgt,res)!
!

pltres = True!
mpres = True!
plot = wrf_map_overlays(f,wks,contour,pltres,mpres)!

; Load the necessary scripts  
load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

; Open a file and read a variable  
f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)  
hgt = wrf_user_getvar(f,”HGT”,0)"

wks = gsn_open_wks(“png”,”hgt”) ; “hgt.png”"

Step-by-step: filled contours using wrf_xxxx

wrf_map_overlays looks at file to determine map projection

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Step-by-step: line/fill contours, vectors
; Load the necessary scripts  
load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl”  
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”!

; Open a file and get several diagnostics 
f = addfile(“wrfout_d01_2005-08-27_00:00:00.nc”,”r”)!
!
slp = wrf_user_getvar(f,”slp",0)  
t2 = wrf_user_getvar(f, ”T2",0)  
u10 = wrf_user_getvar(f, ”U10",0)  
v10 = wrf_user_getvar(f, ”V10”,0)!
 
"

 

wks = gsn_open_wks(“ps”,”wrf”) ; “wrf.ps” file for output!

; Line contours  
os = True  
os@cnLineColor = “NavyBlue”  
os@cnLineThicknessF = 2.0  
c_slp = wrf_contour(f,wks,slp,os)  
 

; Filled contours  
ot = True  
ot@cnFillOn = True  
c_tc = wrf_contour(f,wks,t2,ot)!

; Vectors  
ov = True  
ov@NumVectors = 47  
vec = wrf_vector(f,wks,u10,v10,ov)  
 
; Overlay everything on a map  
mpres = True  
pltres = True  
plot = wrf_map_overlays(f,wks,(/c_tc,c_slp,vec/),pltres, mpres)!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

wrf_contour/wrf_vector
Create line/shaded/filled contours and vectors

opts@MainTitle Main title on the plot
opts@MainTitlePos Main title position (default=left)
opts@NoHeaderFooter Turn off headers & footers (default=False)
opts@Footer Add model information as a footer (default=True)
opts@InitTime Plot initial time on graphic (default=True)
opts@ValidTime Plot valid time on graphic (default=True)
opts@TimeLabel Label to use for valid time
opts@TimePos Time position (default=right)
opts@ContourParameters Contour parameters
opts@FieldTitle Overwrite the field title
opts@UnitLabel Overwrite the field units
opts@PlotLevelID Add level information to field title
opts@NumVectors Density of wind vector (wrf_vector) (default=25)

contour = wrf_contour(f, wks, ter, opts)  
vector = wrf_vector(f, wks, u, v, opts)!

opts@MainTitle
opts@MainTitlePos

opts@NoHeaderFooter
opts@Footer

opts@InitTime
opts@ValidTime
opts@TimeLabel
opts@TimePos

Resources for
wrf_contour &
wrf_vector

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

wrf_map_overlays/wrf_overlays
Overlay plots created with wrf_contour and wrf_vector

To zoom in, set:

 mpres@ZoomIn = True
and

 mpres@Xstart
 mpres@Xend
 mpres@Ystart
 mpres@Yend

to the corner x/y positions of the zoomed plot. You can use
wrf_user_ll_to_ij to get the values for X/Ystart/end

plot = wrf_map_overlays (f, wks, (/contour,vector/), \  
 pltres, mpres)  
plot = wrf_overlays (f, wks, (/contour,vector/), \  
 pltres)!

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/
Examples/SPECIAL/wrf_Zoom.htm

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

wrf_map_overlays/wrf_overlays (cont’d)
 Overlay plots created with wrf_contour and wrf_vector

 mpres = True!
 opts = True!
 opts@cnFillOn = True !
 contour = wrf_contour(a,wks,ter,opts)!
 plot = wrf_map_overlays(a,wks,(/contour/),pltres,mpres)!

 ; As an example, look at the lower right 1/4 of the domain!
 dims = dimsizes(ter)!
 x_start = dims(1)/2!
 x_end = dims(1)-1!
 y_start = 0!
 y_end = dims(0)/2!
 ter_zoom = ter(y_start:y_end,x_start:x_end)!
 mpres = True!
 opts = True!
 opts@cnFillOn = True!
 mpres@ZoomIn = True!
 mpres@Xstart = x_start!
 mpres@Ystart = y_start!
 mpres@Xend = x_end!
 mpres@Yend = y_end!
 contour = wrf_contour(a,wks,ter_zoom,opts)!
 plot = wrf_map_overlays(a,wks,(/contour/),pltres,mpres)!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

wrf_map_overlays/wrf_overlays
Overlay plots created with wrf_contour and wrf_vector

 pltres@NoTitles Turn off all titles
 pltres@CommonTitle Common title
 pltres@PlotTitle Plot title
 pltres@PanelPlot Whether a panel plot is to be drawn
 pltres@FramePlot Whether to advance the frame

plot = wrf_map_overlays (f, wks, (/contour,vector/), \  
 pltres, mpres)  
plot = wrf_overlays (f, wks, (/contour,vector/), \  
 pltres)!

t2 = wrf_user_getvar(a,"T2",5)
t2@description = "Surface Temperature”

Resources for
wrf_overlays and
wrf_map_overlays

pltres@NoTitles
pltres@CommonTitle

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

Latest version of
WRFUserARW.ncl file
usually available here.

Scripts and full-sized
images available.

Google
“WRF ARW NCL”

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Calling Fortran codes from NCL
•  Easier to use F77 code, but works with F90 code

•  Need to isolate definition of input variables and wrap with
special comment statements:

 C NCLFORTSTART  
 C NCLEND!

•  Use a tool called WRAPIT to create a *.so file

•  Load *.so file in NCL script with “external” statement

•  Call Fortran function with special “::” syntax

•  Must preallocate arrays! (using NCL’s “new” statement)

http://www.ncl.ucar.edu/Document/Tools/WRAPIT.shtml

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Example F77 code: myTK.f
 
 subroutine compute_tk(tk,pressure,theta,nx,ny,nz)  
 implicit none  
 integer nx, ny, nz  
 real tk(nx, ny, nz)  
 real pressure(nx, ny, nz), theta(nx, ny, nz)  
 
 integer i, j, k  
 real pi  
 

 do k=1,nz  
 do j=1,ny  
 do i=1,nx!
 pi = (pressure(i,j,k)/1000.)**(287./1004.)  
 tk(i,j,k) = pi*theta(i,j,k)!
 end do!
 end do!
 end do!
 end!

C NCLFORTSTART

C NCLEND

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Create “myTK.so” file and use in script
 % WRAPIT myTK.f!

This will create a “myTK.so” file

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl” !!
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
external myTK “./myTK.so” !!
!

begin!

!t = wrf_user_getvar(a,”T”,5)  

!t = t + 300!
!p = wrf_user_getvar(a,”pressure”,5)  

!

; Must preallocate space for output arrays"

!dim = dimsizes(t)!
 tk = new(dimsizes(t), typeof(t))  
!

; Remember, Fortran/NCL arrays are ordered differently"
 myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))!
end!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Calling Fortran 90 codes from NCL
•  Can use simple Fortran 90 code
•  Your F90 program cannot contain any of the

following features:

– pointers or structures as arguments
– missing or optional arguments

– keyword arguments
–  recursive procedures

•  The input arguments must be reproduced in a
separate F77-like “stub” file

•  “WRAPIT” is a modifiable script

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

myTK.f90
subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer :: nx,ny,nz  
 real, dimension (nx,ny,nz) :: tk, pres, theta, pi  

! 
 pi = (pres/1000.)**(287./1004.)  
 tk = pi * theta  
 
end subroutine compute_tk !

Example F90 code: myTK.f90

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

myTK.f90
subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer :: nx,ny,nz  
 real, dimension (nx,ny,nz) :: tk, pres, theta, pi  

! 
 pi = (pres/1000.)**(287./1004.)  
 tk = pi * theta  
 
end subroutine compute_tk !

myTK.stub
C NCLFORTSTART  
 subroutine compute_tk (tk, pres, theta, nx, ny, nz)  
 implicit none  
 integer nx,ny,nz  
 real tk(nx,ny,nz)  
 real pres(nx,ny,nz), theta(nx,ny,nz)  
C NCLEND

Example F90 code: myTK.f90 + stub

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Create “myTK.so” file and use in script
 % WRAPIT myTK.stub myTK.f90!

Should create a “myTK.so” file. Script will be exactly the same.

load “$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" !!
load “$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”  
external myTK “./myTK.so” !!
!

begin!

!t = wrf_user_getvar(a,”T”,5)  

!t = t + 300!
!p = wrf_user_getvar(a,”pressure”,5)  

!

; Must preallocate space for output arrays"

!dim = dimsizes(t)!
 tk = new(dimsizes(t), typeof(t))!
!
 myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))!
end!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Debugging tips

•  Start with an existing script, if possible

•  Use editor enhancements for coloring of
syntax, functions, etc

•  Use indentation (even though not needed)

•  Use “ncl_filedump” to look at file quickly

•  Use “printVarSummary” to examine variables

– Check for no “_FillValue” or wrong
“_FillValue” value

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Debugging tips (cont’d)
•  To further examine data, use:

–  print(min(x)) and print(max(x)) ; Min/Max of data

–  print(num(ismissing(x))) ; Count # of msg vals

–  print(dimsizes(x)) ; Print dimension sizes

•  Read documentation for functions

•  For graphics, make sure spelling the resource
name correctly

•  Read errors and warnings carefully!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Nested do loops, unnecessary code in do loops

–  Try to use f90-style arithmetic where possible

–  If code doesn’t need to be in do loop (like initializing a variable),
move it outside the loop

•  Copying metadata unnecessarily. Use (/ and /) to avoid this:

 ch4_tmp = (/ch4/) !

•  Creating lots of big arrays and not deleting them when no
longer needed. Use NCL’s “delete” procedure to clean up.

•  Reordering the same array multiple times

–  Do once and store to local variable

Inefficient code

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

; nx = ny = nz = 100!
tk = new((/nx,ny,nz/),float)!
do k=0,nz-1!
 do j=0,ny-1!
 do i=0,nx-1!
 pi = (p(i,j,k)/1000.)^(287./1004.)!
 tk(i,j,k) = pi*theta(i,j,k)!
 end do!
 end do!
end do!

Nested do loop: 9.6 CPU seconds

Improving memory efficiency in NCL using array arithmetic

; nx = ny = nz = 100!
pi = (p/1000.)^(287./1004.)!
tk = pi*theta!

Using NCL’s array arithmetic: 0.12 CPU seconds

80x faster!

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Problems installing or running NCL?

•  Send email to ncl-install@ucar.edu
or ncl-talk@ucar.edu (must subscribe first):

http://mailman.ucar.edu/mailman/listinfo/ncl-install
http://mailman.ucar.edu/mailman/listinfo/ncl-talk

•  Be specific about problem:

–  What kind of machine (“uname –a”)

–  Which version of NCL, or which file did you
download? (“ncl –V”)

–  What exactly is the problem? Include what you are
trying to do, and exactly what error message you
got.

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Customizing your NCL graphics environment

•  Download “.hluresfile” file, put in home directory!!

–  ✪ Changes your background, foreground colors to
white/black

–  ✪ Changes font from times-roman to helvetica!

–  ✪ Changes “function code” from ‘:’ to ‘~’"

–  WRF-NCL users: use to change the default color map"

http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml

~/.hluresfile

✪ These are the defaults in V6.1.0 and later"

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Sample “.hluresfile”

*wkColorMap : BlAqGrYeOrReVi200!

*wkWidth : 1500!

*wkHeight : 1500

wkWidth and wkHeight affect size of PNG and X11"

NCL default color table

Changed default
color map to

BlAqGrYeOrReVi200

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Useful URLS
•  Online WRF-NCL Graphics Tutorial

http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

•  Editor Enhancements
http://www.ncl.ucar.edu/Applications/editor.shtml

•  Mini NCL reference manual
http://www.ncl.ucar.edu/Document/Manuals/language_man.pdf

•  WRF-NCL functions (built-in and “WRFUserARW.ncl”)
http://www.ncl.ucar.edu/Document/Functions/wrf.shtml

•  Download NCL
http://www.ncl.ucar.edu/Download/

•  Application examples (includes WRF and shapefile examples)
http://www.ncl.ucar.edu/Applications/

•  NCL Workshops
http://www.ncl.ucar.edu/Training/Workshops/

•  NCL email lists to join
http://www.ncl.ucar.edu/Support/email_lists.shtml

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Overview
•  NCL language basics
•  File input/output
•  Data Analysis
•  Visualization
•  Calling Fortran code from NCL
•  Tips, where to get help
•  What’s new

Topics

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

What’s new in NCL V6.2.0

•  Significant speed-up for raster contouring and primitives

•  New WRF diagnostics in wrf_user_getvar: omega (“omg”),
virtual temperature (“tv”), wet bulb temperature (“tw”)

•  Significant file I/O improvements and bug fixes

•  New “svg” graphical output format

•  Library for generating KML output

•  Over 120 new color tables

Released April 2, 2014

http://www.ncl.ucar.edu/current_release.shtml

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

What’s new in NCL V6.2.0 (cont’d)

•  New functions

–  Simple and multiple linear regression analyses

–  Kolmogorov-Smirnov two sample test

–  Area of a polygon

–  Several more

•  Bug fixes to existing functions

–  Plotting rotated WRF lat/lon grids

•  Several new graphical resources

Released April 2, 2014

http://www.ncl.ucar.edu/current_release.shtml

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

253,746 cells
V6.1.2 – 106 CPU seconds
V6.2.0 – 0.58 CPU seconds

Faster viewing of high-res MPAS grid

Fast
drawing of
the MPAS

edges

Zoomed in
view of
MPAS
edges

2,621,442 cells
V6.1.2 – 83.5 CPU seconds
V6.2.0 – 14.5 CPU seconds

Data from Michael
Duda (MMM)

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

•  Version 6.2.1 – late summer 2014
–  A bug-fix release

•  Version 6.3.0 – Winter 2015
–  Priorities still being fleshed out
–  Further speed-up for graphics
–  Focus on parallelism
–  Better support for shapefiles (write capability)
–  Quick-look tool in GoogleEarth-like environment
–  Drawing of vectors on unstructured grids
–  Code modernization

•  Python releases – WRF functions added to PyNGL,
major PyNIO release coming

What’s coming in V6.2.1/V6.3.0

Mary Haley (haley@ucar.edu)

wrfhelp@ucar.edu

Questions specific to WRF-NCL

ncl-talk@ucar.edu

Issues with NCL
(must subscribe first)

http://mailman.ucar.edu/mailman/admin/ncl-talk

Questions?

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

without ~/.hluresfile with ~/.hluresfile
In NCL V6.0.0 and earlier…

NCL & WRF-NCL l WRF User’s Workshop l June 23-27, 2014

Installing NCL and setting up environment

•  www.earthsystemgrid.org (login/password)

•  Download appropriate precompiled binary

•  Run “tar –zxvf” on the *.tar.gz file

•  setenv NCARG_ROOT to parent directory

•  Add $NCARG_ROOT/bin to search path

•  Copy “.hluresfile” to home directory

http://www.ncl.ucar.edu/Download/install.shtml

http://www.ncl.ucar.edu/Download/

NCL and GoogleEarth™

•  Summer 2013 intern project in CISL
•  Mohammad Abouali, intern; Alan

Norton and Rick Brownrigg: mentors
•  A library of NCL routines has been

developed to enable earth scientists to
easily convert geo-referenced model
output and other data to KML for
display in Google Earth.

