

UNIVERSITY OF SASKATCHEWAN

1. Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada, 3. Environment Canada, National Hydrology Research Center, Saskatoon, SK, Canada

Introduction

The Noah with multi-parameterization options (Noah-MP) LSM is a new-generation community land model, which uses multiple options for many key land-atmosphere interaction processes to represent seasonal and annual cycle of snow, hydrology, and vegetation. Despite continuous evaluation and improvements in Noah-MP, it has not been evaluated in boreal forest region. In this study, Noah-MP was used to identify the most crucial processes for the simulation of a boreal forest site. The test site selected is BERMS Old Aspen Flux (OAS) field station in central Saskatchewan, Canada. In this site, about an 8-10 cm deep surface organic soil layer overlays the top mineral soil layer. Since the original Noah-MP does not include an organic soil option, here a new developed organic soil parameterization scheme in Noah-MP model is added and verified with the observations from OAS site. The new simulation with a top organic soil layer is then compared with the original Noah-MP simulation with mineral soil instead.

Field Site

The Old Aspen Site (OAS, 53.7°N, 106.2°W, altitude 601 m) is a mature deciduous broadleaf forest at the southern edge of Canadian boreal forest in Prince Albert National Park, Saskatchewan, Canada. The 30-min meteorological observations from OAS are used as the atmospheric forcing data to drive Noah-MP in an uncoupled 1-D mode include air temperature, specific humidity, wind speed, pressure, precipitation, downward solar and longwave radiation. The significant climatic feature during the study period is a prolonged drought that began in July 2001 and extended throughout 2002 and 2003. The temperature is also relatively low during that period.

Methodology

Thermal and hydraulic parameterizations for organic soil

Soil carbon or organic fraction for each layer is determined as:

$$f_{sc,i} = \frac{\rho_{sc,i}}{\rho_{sc,\max}}$$

where $f_{sc,i}$ is the carbon fraction of the each layer, $\rho_{sc,i}$ is the soil carbon density, and $\rho_{sc,max}$ is the maximum possible value (peat density of 130 kg m^{-3}).

The soil properties for each layer are specified as a weighted combination of organic and mineral soil properties:

$$P = (1 - f_{sc,i})P_m + fP_o$$

Where P_m is the value for mineral soil, P_o is the value for organic soil, and P is the weighted average quantity.

The incorporation of organic layer in Noah-MP Land Surface Model and its evaluation over Boreal Old Aspen Forest Flux Site Liang Chen¹, Yanping Li¹, Fei Chen², Alan Barr³, Michael Barlage², and Bingcheng Wan² liang.chen@usask.ca

Noah-MP Land Surface Model and its evaluation over Boreal Old Aspen Forest Flux Site. (Submitted to Journal of Geophysical Research)