

WRFDA Overview: Status and Plan

Zhiquan Liu

Jenny Sun, Hui-Chuan Lin, Xin Zhang, Michael Kavulich, Feng Gao, Craig Schwartz, Syed Rizvi, Hans Huang, Junmei Ban, Ying Zhang, Dongmei Xu, Chun Yang NCAR/MMM

Acknowledge:

Former team members and many collaborators and visitors AFWA, NCAR, PWS, NSF-AGS, USWRP, NSF-OPP, NASA, PSU,CWB, BMB, CAA, KMA, EUMETSAT, NUIST

Outline

• New features in WRFDA V3.7

• Ongoing developments

WRFDA is a Data Assimilation system built within the WRF software framework, ...

- **Goal:** Community WRF DA system for
 - research/operations, and
 - deterministic/probabilistic applications.
- DA Techniques:
 - 3D-Var
 - 4D-Var
 - Ensemble Transformed Kalman Filter
 - Hybrid-3DVAR
- Support:
 - NCAR/MMM via wrfhelp@ucar.edu

Observations: Conv.+Sat.+Radar(+bogus)

Both operations run in hybrid-3DVAR mode

www2.mmm.ucar.edu/wrf/users/wrfda

WRFDA USERS PAGE

Quick links:

Home

WRFDA Home

WRFDA News

Public Domain

Notice

Contact Us

WRF Users Page

Registration is now open for the WRF

Workshop and the WRFDA tutorial.

- In-Situ:
 - SYNOP
 - METAR
 - SHIP
 - BUOY
 - TEMP
 - PIBAL
 - AIREP, AIREP humidity
 - TAMDAR
- Bogus:
 - TC bogus
 - Global bogus

Remotely sensed retrievals:

- Atmospheric Motion Vectors (geo/polar)
- SATEM thickness
- Ground-based GPS TPW or ZTD
- SSM/I oceanic surface wind speed and TPW
- Scatterometer oceanic surface winds
- Wind Profiler
- Radar data (enhancements in V3.7)
- Satellite temperature/humidity/thickness profiles
- GPS refractivity (e.g. COSMIC)
- Stage IV precipitation/rain rate data (4D-Var)
- Radiances: can use RTTOV_11.1 or 11.2 (new in V3.7) or CRTM_2.1.3:
 - HIRS NOAA-16, NOAA-17, NOAA-18, NOAA-19, METOP-A
 - AMSU-A NOAA-15, NOAA-16, NOAA-18, NOAA-19, EOS-Aqua, METOP-A, METOP-B
 - AMSU-B NOAA-15, NOAA-16, NOAA-17
 - MHS NOAA-18, NOAA-19, METOP-A, METOP-B
 - AIRS EOS-Aqua
 - SSMIS DMSP-16, DMSP-17, DMSP-18
 - IASI METOP-A, METOP-B
 - ATMS Suomi-NPP
 - MWTS FY-3
 - MWHS FY-3
 - SEVIRI METEOSAT

WRFDA is flexible to allow assimilation of different formats of observations:

- Little_r (ascii), HDF, Binary
- NOAA MADIS (netcdf),
- NCEP PrepBufr,
- NCEP radiance bufr

CHOICE OF ANALYSIS VARIABLES

cv_options	Analysis variables
3	Ψ , unbalance X, unbalance t, pseudo rh and unbalance log (P _s)
5	Ψ , unbalance X, unbalance t, pseudo rh and unbalance P _s
6	Ψ and unbalance X, unbalance t, unbalance pseudo rh and unbalance P_s
7	u, v, t, Ps and pseudo rh (new in WRFDA V3.7)

Pseudo rh defined as Q divided by Qs from the background

New Analysis Variable Option CV_Options = 7

- CV7 uses velocity components u/v as momentum control variable all others use **Psi/Chi** (stream function/velocity potential)
- No multivariate correlation is considered yet
- By avoiding the u/v -> Psi/Chi conversion, the analysis can better fit to convective-scale observations, such as radar radial velocity
- **Planned future improvement: add correlation between temperature and velocity**

New capabilities in WRFDA 3.7 for radar DA

- Added separate cloud analysis variables Qc and Qr (vs. existing total water analysis variable)
- A new scheme to indirectly assimilate reflectivity by converting reflectivity to rainwater
- Added the assimilation of estimated humidity (from reflectivity) within cloud
- Making 4DVar radar DA fully compatible with 3DVar
- The new CV option CV7 is recommended for radar DA

More details see talk by Jenny Sun Friday 8:30am

3H accumulated rainfall in northeastern Colorado

during STEP 2014 Hydromet summer real time experiment at t = 3h

OBS

3DVar without radar

3DVar with radar

WRFPlus (TL/AD of WRF) code in V3.7

- Upgraded to be consistent with WRF V3.7
- WRFPlus now has two microphysics options for 4DVAR assimilation.
 - &physics
 mp_physics_ad =
 98: Use original large-scale condensation
 microphysics (default)
 99: Use new modified Kessler scheme (new in V3.7)

Outline

• New features in WRFDA V3.7

• Ongoing developments

New radiance data (1): AMSR2

Channel Frequency		Polarization	Beam Width	Footprint (along scan* along track)
1,2	1,2 6.925		1.8° ± 15%	35*61 km
3,4	7.3	V, H	$1.8^{\circ} \pm 15\%$	35*61 km
5,6	10.65	V, H	1.2° ± 15%	24*41 km
7,8	18.7	V, H	$0.65^\circ \pm 15\%$	13*22 km
9,10	23.8	V, H	0.75° ± 15%	15*26 km
11,12	36.5	V, H	$0.35^{\circ} \pm 15\%$	7*12 km
13,14	89.0	V, H	0.15° ± 15%	3*5 km

gcom-w-1-amsr2_ch0009 OBS 10085 / 10085

Allow clear-sky or all-sky radiance assimilation over water

See Poster P5 by Chun Yang et al.:

Impact of assimilating AMSR-2 radiance observations on forecast of Hurricane Sandy

New radiance data (2): GOES-Imager

of GOES-13 clear-sky WV Obs

WRF 1-h Forecast w/o assim. of GOES-13 WV Obs

WRF configured at 3-km with hourly cycling 3DVAR assimilation

Multi-Incremental 4DVAR

- 4DVAR minimization runs at lower resolutions than WRF model's to allow substantial speed-up
- Now works for cv_options = 3
 - Need more development to make it work properly with cv_options = 5/6/7

TABLE 2. Computational performance comparison of the full-resolution WRF 4D-Var and multi-incremental WRF 4D-Va on NCAR Yellowstone; Each test has three outer loops with 20 iterations inner loops for each. Unit: Minutes

	1024	512	256	128	64	32	16	8	Cores
	257	392	728	1230	2169	4191	_	_	Full-Res.
—12-h vs. ~ 40min!		←—	37	53	83	135	217	455	Multi-Inc.

15km/15km/15km versus 135km/45km/45km

Xin Zhang et al., 2014: Development of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF. J. Atmos. Oceanic Technol., 31, 2 777–2794.

Hybrid 4D-EnVar

- 4D extension of hybrid-3DVAR
- Need 4D ensemble perturbation input to form 4D flow-dependent background error covariance
- No need for TL/AD version of WRF
- Approximation: time-invariant static part of analysis increment and alpha control variable

4DVAR for WRF/Chem Daven Henze's group at CU

- For aerosol/chemistry data assimilation and forecasting
- Good progress on WRFPlus-Chem
 - J. J. Guerrette and D. K. Henze, 2015, GMDD
 - TL/AD Implementation based on GOCART aerosol scheme
 - Demonstration for emission source inversion,
 - Also see Poster P68 by J. J. Guerrette and D. K. Henze
- Working toward WRF/Chem-4DVAR for aerosol/ chemistry DA

Future Plan

- Will focus more on convective-scale DA
 - Radar, all-sky radiances (high spatial-/temporal-res. geostationary sensors), precipitation observations, near surface data, WV from the ground-based GPS
 - Advanced 4D data assimilation techniques
 - 4DVAR, hybrid 4D-EnVar, hybrid-4DVAR
 - Ensemble analysis within Var system.
 - Demonstration with real-time DA/forecast
- Explore new application areas

- e.g., aerosol/chemistry data assimilation, coupled DA

Final Remarks

- Most of these new developments are through externally funded projects
 - We will try our best to make them available to the community
 - But delays could occur given resource limitation and pressing project deliverables
- Community contributions are welcome for future release
 - So that your development will be kept updated along with other new capabilities in the future.
 - Doing so may not be trivial for the task like WRF/Chem-4DVAR and also limited by resource available for outside developers and NCAR developers

