

### Recent Developments of WRF Obs-nudging and Relaxation Ensemble Kalman Filter FDDA

#### Yubao Liu, Yonghui Wu, Linlin Pan, Al Bourgeois, Jason Knievel

#### NCAR

John Pace, Frank Gallagher, and Scott Halvorson US Army Dugway Proving Ground

16<sup>th</sup> Annual WRF Users Workshop, 15 – 19 June 2015, Boulder, CO

# A Note for Mesoscale DA



- Mesoscale weather: rich flow features, fast-evolving and difficult to define proper Background Error covariance;
- Surface data are important. Complex terrain and PBL turbulences make surface data assimilation challenging;
- $\diamond$  Radar data assimilation is important;
- Physical process (sources/sinks) are large terms, often interacting strongly with data ingested into WRF;
- Thus, four-dimensional data assimilation (FDDA) schemes that permit interaction between a full-physics model and observations data are advantageous.



# FDDA: 4D continuous DA

- $\diamond$  4DVAR, EN-4DVAR
- $\diamond$  Obs-nudging
- ♦ REKF (Relaxation Ensemble KF)
- ♦ Pseudo-Continuous-FDDA:
  - Grid-nudging,
  - 4D-LETKF,
  - High-frequency EnKF,

**REKF:** an advanced obs-nudging FDDA scheme using the EnKF technology.

# **Obs-Nudging FDDA**



# **Obs-Nudging+3DVAR/GSI hybrid DANCAR**



# **Obs-Nudging and REKF**



### **Obs-nudging**



### **REKF**: Leverage obs-nudging with ensemble Kalman gains.



# **Characteristics of REKF**

- Flow-dependent obs-nudging weight function
- Assimilate non-prognostic variables
- Operation Operation Operation Operation
- Good tolerance of nudging coefficients (G)
- Readily adopting EnKF achievements, e.g.
  - (adaptive) localization
  - ensemble and climatological hybrid BE (EnVar...)
- Hybrid with GSI, DART, latent heat nudging RDA



### **Old WRF obs-nudging data structure:**

VAROB (n, time, lat, long, U, V, T, Q)

New WRF REKF data structure:

VAROB (n, time, lat, long, U) VAROB (n+1, time, lat, long, V) VAROB (n+2, time, lat, long, T) VAROB (n+3, time, lat, long, Q) VAROB (n+4, time, lat, long, Vr)

Remove missing data; readily add new data type; and significantly reduce the memory of REKF.

# Validation experiments



## ♦ Code validation with "OSSE":

Compare with Obs-nudging, WRF-VAR, DART, GSI

## ♦ Kalman gain approximation in WRF:

- Spatial interpolation
- Temporal interpolation

## $\diamond\,$ Dealing with model errors and rank deficiency

- Localization
- Spurious noises
- Ensemble and climatological hybrid BE

### Assimilation of radar radial velocities

• Covariance: COV(U, Vr), COV(V, Vr)

# Validation experiments



### ♦ Code validation with "OSSE":

Compare with Obs-nudging, WRF-VAR, DART, GSI

### Kalman gain approximation in WRF:

- Spatial interpolation
- Temporal interpolation

### $\diamond\,$ Dealing with model errors and rank deficiency

- Localization
- Spurious noises
- Ensemble and climatological hybrid BE

### Assimilation of radar radial velocities

• Covariance: COV(U, Vr), COV(V, Vr)

# **"Perfect-Model-Perfect-Obs"** Exps NCAR

| EXPs                              | Description                                                                                           | 50°N                                        |
|-----------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|
| TRUTH:<br>Natural un<br>(WRFv3.6) | Nature run from unperturbed<br>initial conditions (Ics)<br>OBS: simulated soundings<br>from the TRUTH | 45°N -                                      |
| CTRL                              | Forecast from perturbed ICs.                                                                          | 40°N                                        |
| <b>3DVAR</b>                      | CTRL ICs + WRF 3DVAR                                                                                  | 35°N                                        |
| 4DVAR                             | CTRL ICs + WRF 4DVAR                                                                                  |                                             |
| DART                              | CTRL ICs + DART EAKF                                                                                  | 18Z, 10 Feb, 2008                           |
| GSI                               | CTRL ICs + GSI 3DVAR                                                                                  | 25°N                                        |
| <b>Obs-Nud</b>                    | CTRL ICs + WRF Obs-Nudging                                                                            | O Obs — T                                   |
| REKF                              | CTRL ICs + WRF 4D-REKF                                                                                | -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 |

All Exps: 6h DA + 24h fcsts

run, and T errors of the CTRL I.Cs.

#### Test different DA schemes in the **NCAR** same framework (OSSE)





$$\frac{dx}{dt} = \dots + GKeWtWq(y^o - Hx^b)$$

#### CTL: Ke=0 FDDA: Ke=Cressman CORR: Ke=20 clim-analogs







$$\frac{dx}{dt} = \dots + GK_hWtWq(y^o - Hx^b)$$
  

$$\frac{dx}{dt} = \dots + GK_hWtWq(y^o - Hx^b)$$
  

$$\frac{dx}{dt} = M_c Cressman$$
  

$$\frac{dx}{REKF}: K_h = K_e Cressman$$







$$\frac{dx}{dt} = \dots + GK_hWtWq(y^o - Hx^b)$$
  

$$\frac{dx}{dt} = \dots + GK_hWtWq(y^o - Hx^b)$$
  

$$\frac{dx}{dt} = M_c Cressman$$
  

$$\frac{dx}{REKF}: K_h = K_c Cressman$$
  

$$\frac{dx}{REKF}: K_h = K_c Cressman$$
  

$$\frac{dx}{REKF}: K_h = K_c (1 - \alpha)K_e$$



# Assimilating Radar Radial Wind (Vr)



#### Four Exps:

NODA: No DA CRES: UVTQ REKF: UVTQ REKFVr: UVTQVr

## Case: 10 Feb. 2008



#### NODA: No DA

ONUD: Obs-nudging using soundings at 18Z and 19Z REKF: REKF using soundings at 18Z and 19Z REKFVr: REKF using soundings at 18Z and 19Z and Vr at 18:15Z, 18:30Z, and 18:45Z.

Parameters used for soundings

 $R_{xy} = 200 km$   $R_t = 48 min$  coef = 6.0E - 4

Parameters used for Radar

 $R_{xy} = 35km$   $R_t = 15min$  coef = 6.0E - 4



# Exps of Radar Wind (Vr) Assimilation NCAR



# Summary



- REKF advances WRF obs-nudging with ensemble-based flow-dependent weight function. It preserves the advantages of "obs-nudging" while taking in the EnKF capabilities.
- Validation of REKF with an OSSE data assimilation testbed shows very encouraging performances.
- REKF is capable of assimilating both standard observations (UVTQ) and remote sensing data (e.g. Vr).
- REKF has been employed in a real-time operational forecast system running at the Army Dugway Proving Ground with 32 ensemble members and 3km grid.

