Indirect impact of ozone assimilation using Gridpoint Statistical Interpolation (GSI) data assimilation system for regional applications

Kathryn Newman^{1,2}, Ming Hu^{1,3}, Hui Shao^{1,2} and Christopher Williams^{1,2}

¹ Developmental Testbed Center (DTC)

² National Center for Atmospheric Research (NCAR)/Research Applications Laboratory (RAL)

³ National Oceanic and Atmospheric Administration (NOAA)/Global Systems Division (GSD)

Acknowledgement: US Air Force

16th Annual WRF User's Workshop June 15-18, 2015 Boulder, CO

Overview and Motivation

- Assess utility of SBUV profile ozone when assimilated into Gridpoint Statistical Interpolation (GSI) for regional applications without prognostic ozone
 - Evaluate forecast performance for regional scale model forecasts (ARW)
- Determine forecast impact from increasing model top from 10 hPa to 2hPa
 - Necessary for ozone assimilation
- Explore use of ozone data in GSI/ARW
 - Does this data provide impact without being propagated into model variables?

Experiment Design

- GSI v3.3 (3d-var) coupled with WRF-ARW v3.6.1
 - Partial cycling scheme cold start 06/18, warm start 12/00
- Testing period: 2014 August 1-31
- 15 km horizontal resolution, 62 (57) vertical levels, 2 mb (10 mb) model top
- 48-hr deterministic forecasts initialized at 00/12

	Observations Assimilated	
Conventional	Air Force conventional observations	
	GPS-RO	
Satellite Radiances	AMSU-A (noaa-15,-18,-19, metop-a,- b, aqua)	MHS (noaa-18,-19, metop-a,-b)
	ATMS (npp)	IASI (metop-a,-b)
	HIRS4 (noaa-18,-19, metop-a,-b)	CrIS (npp)
	AIRS (aqua)	
Ozone	SBUV (noaa-19)*	

Model Top Test

Experiments:

- **CTL10**: control
 - Air Force operational configuration, except RRTMG used rather than RRTM/Dudhia
 - 57 vertical sigma levels
 - 10 hPa model top

• **CTL02**:

- Stratospheric lapse rate applied
- 62 vertical levels
- 2 hPa model top
- Verification against ERA-Interim reanalysis using Model Evaluation Tools (MET)

Model Top Test – GSI Diagnostics

- Same channel selection for both configurations
- 2 hPa model top shows smaller bias

Model Top Test: Verification (ERA-I)

CTL02 CTL10 CTL02-CTL10 (pairwise)

• Consistent statistically significant (SS) improvements for CTL02 in temperature for all lead times

• Zonal wind field SS improvement for CTL02 for longer leads: 24-48 hr

Developmental Testbed Center

DTC

Model Top Test: Verification (ERA-I)

99% CI Statistical Significance Table (BCRMSE): CTL02 vs. CTL10										
TEMP P	CDMCE	Forecast Lead Time (hr)								
TEMP BCRIVISE		0	6	12	18	24	30	36	42	48
n	50	СТИ			LeadT	ime(0)	.48 hr)			92
Ĕ _	2 100	CTLUZ	UTUVZ	UTUVZ				CILUZ	CTUVZ	<u>(02</u>
s	250	CTL02	CTL02	CTL02	CTL02	CTL02	CTL02	CTL02	CTL02	CTL02
Pressure Level	400		CTL10		CTL10		CTL10	CTL10	CTL10	
9	500	CTL10			CTL02	CTL02	CTL02	CTL02	CTL02	CTL02
	700	CTL10	CTL10			CTL02	CTL02	CTL02	CTL02	CTL02
5	850	CTL02	CTL02	CTL02		CTL02		CTL02		
- ≥	925	CTL02	CTL02	CTL02		CTL02	CTL02	CTL02	CTL02	CTL02
Encoract Load Time (hr)										
U-Wind	BCRMSE									
	50		CTLO2	CT102	10	24	CT102	CT102	44	40
(ed	100		01002	01002	CTI 10		01002	01002		
Ē	100				CTLID					
els	250	CILUZ	CILUZ	CTLO2	CTLOZ			CTLO2		CTL02
Les L	400			CILUZ	CTLOZ	CTLOZ	CTLOZ	CTLOZ	CTLUZ	CTLO2
2	500				CILOZ	CILOZ	CILOZ	CTLO2	CILOZ	CILO2
nss	700		CTLID					CTLOZ	CTLOZ	CTLOZ
Pre	850	CTL02	CTL10	CTL10					CTL02	CTL02
-	925	CTLO2	CTL10	CTL10	CTL02			CTL02	CTL02	CTL02
Forecast Load Time /br)										
V-Wind BCRMSE		0	6	12	18	24	30	36	42	48
		•	•		20					

49
40
TLO2
TLO2
TLO2
TLO2

Improvement from 2 hPa model top

- Consistent improvement throughout T field
- Strong signal of improvement for zonal & meridional wind fields.
 - U: longer lead times
 - V: upper levels
- Mixed results for specific humidity (not shown)

Statistically Significant (SS) pairwise differences (99%):

Green shading: 2 hPa model top better Blue shading: 10 hPa model top better

Developmental Testbed Center

DTC

SBUV: Experiment Design

- Testing period: 1-31 August 2014
- 48-h deterministic forecasts initialized at 00/12
- Experiments:
 - **CTL**: Same configuration as in **CTL02**, including standard conventional and radiance data assimilated
 - **SBUV**: with additional assimilation of Solar Backscatter Ultraviolet (SBUV/2; v8) profile ozone
 - NOAA 19
- Verification against ERA-Interim (ERA-I) reanalysis using Model Evaluation Tools (MET) and comparison to radiance observations.
- O_3 not prognostic variable in ARW
 - GFS ozone used for background
 - Indirect impact on analysis and forecasts

DTC

Forecast Verification Against ERA-I

✓ Verification against ERA-interim reanalysis

SBUV Impact: Verification (ERA-I)

TMP BCRMSE Timeseries at 50 hPa

TMP BCRMSE Timeseries at 500 hPa

- Bias Corrected RMSE of temperature forecasts at 50 hPa and 500 hPa
- Strongest improvement within first 24-hr forecast
- Small SS improvements present at longer leads at mid-level T

SBUV Impact: Verification (ERA-I)

999	% CI	Statis	tical	Signif	icanc	e Tabl	e: SB	UV v	s. CT	RL
TEMP BCRMSE		Forecast Lead Time (hr)								
		0	6	12	18	24	30	36	42	48
2	50	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	
ů,	100	SBUV	SBUV		SBUV			SBUV		
ls (250		SBUV	SBUV		CTRL	CTRL		CTRL	CTRL
S.	400	SBUV	SBUV	SBUV						
e L	500	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV
Pressur	700									
	850	SBUV	SBUV	SBUV	SBUV					
	925						CTRL	CTRL		
		Forecast Lead Time (hr)								
U-Wind BCRMSE		0	6	12	18	24	30	36	42	48
~	50	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV		SBUV	SBUV
vels (hPa	100	SBUV	SBUV							
	250		SBUV							
	400	SBUV	SBUV	SBUV	SBUV					
L C	500	SBUV		SBUV	SBUV					
sur	700		SBUV	SBUV	SBUV					
5	850	SBUV	SBUV		SBUV					
ā.	925	CTRL	SBUV	SBUV	SBUV					
					Fores	act Load Tim	an (br)			
V-Wind BCRMSE		0	6	12	18	24	30	36	42	48
-	50	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV	SBUV
ure Levels (hPa)	100	SBUV								
	250		SBUV	SBUV						
	400	SBUV	SBUV	SBUV						
	500	SBUV	SBUV	SBUV						
	700	SBUV	SBUV	SBUV	SBUV					
Se l	850	SBUV								
ā	925		SBUV	SBUV						

- Temperature:
 - Positive impacts at upper- and mid-levels
 - Degradation at 250 hPa after 24-hrs

• Winds:

- Positive impacts particularly at early lead times
- Mixed results for specific humidity (not shown)

Green shading: SBUV better Blue shading: CTL better

SBUV Ozone Forecast Impact

400 hPa Temperature: 12 hr forecast

0.16

0.1

0.04

-0.04

-0.1

-0.16

0

400 hPa Pairwise Temperature Difference

- Lead time & level SS favoring SBUV
- In general, cooling effects from SBUV assimilation
 - More consistent w/ ERA-I
 - Spatially coherent SS differences favoring SBUV configuration
 - Cooling trend for SBUV SS

Red points: pairwise SS positive impacts from SBUV

Forecast Verification Against Radiance Data

- ✓ F-O against AMSU-A radiances
- ✓ n19, n18 platforms chosen for coverage (n19 largest coverage)
- Channel 10: Higher peaking for model domain, temperature sensitivity
- ✓ Channel 5: Mid-level weighting function peak, temperature sensitivity
- ✓ Spatial verification averaged over 1 degree box, 1 month testing period

Forecast Bias

- Strong signature of improvement from SBUV at analysis time. 12-hr forecast consistently smaller bias in SBUV. 24hr differences negligible
- **Developmental Testbed Center-**

DTC

• Improvement for SBUV at analysis time in first 15 days. 12-hr SBUV bias smaller after day 5. 24-hr forecast consistently smaller biases in SBUV.

12-hr Forecast Departure from AMSU-A

• Channel 10: higher peaking, temperature sensitive

24-hr Forecast Departure from AMSU-A

• Channel 5: mid-level peak, temperature sensitive

Summary

- Increasing model top from 10 hPa to 2 hPa presents overall improvement to analysis and forecasts
- SBUV ozone were assimilated into GSI, GFS ozone used for background
 - Only analysis update, indirect impact on radiances
- Assimilating SBUV presents generally positive impacts
 - Improved T analysis for most levels
 - Wind improvements for short term forecasts (~18 hrs)
 - Cooling pattern from SBUV, more consistent w/ observations & reanalysis

GSI Diagnostics in MET

- Model Evaluation Tools (MET) v5.1 (planned release fall 2015) will include GSI diagnostics capabilities
- Reformat binary GSI diagnostic output files (conv, rad)
- Ability to threshold, filter, subset and produce statistics on diagnostic output
 O-B: Conventional Temperature Obs

