Assessing the Fidelity of Dynamical Downscaling with the NASA Unified-WRF Model

Presenter: Jonathan L. Case (ENSCO, Inc./NASA MSFC/SPoRT Center)

Multi-Center NASA (JPL, GSFC, MSFC, AMES) Working Group

17 June 2015 16th WRF Users Workshop Boulder, CO

Computational Demands of Climate Projection

I. Spatial grid resolution – typically about 100 km for today's climate models. For some processes it is thought that resolutions of at least 10 km and maybe 1 km are needed. This requires 1000 to 10,000 times the computational capacity that we presently apply.

II. Model Complexity & Earth System Science – accurate depiction of climate variability and change involves representing the interactions between the ocean, atmosphere, land, vegetation, cryosphere, etc., accounting for physical, chemical and biological processes.

III. Complex and Demanding Experimental Design – the science and assessment demands associated with providing an accurate and well characterized projection are increasing over time.

Assessments for Decision Makers require only a few variables but with <u>challenging characteristics</u>

- Surface: Rainfall, Temperature, Wind, Solar
 - O(10 km) or better, Hourly values
 - Realistic underlying "weather" variability (e.g., atmospheric rivers, central plains MCSs, tropical cyclones, northeast winter storms)
 - Quantification of uncertainty requires (big) ensembles accounting for anthropogenic drivers/uncertainty, model structure uncertainty, initial condition/natural variability uncertainty

Dynamic Downscaling : One Common Solution

Use a 2nd model with much higher spatial resolution and possibly improved physical process representation over the area desired for impacts assessment with the boundary values from the GCM

Africa: 26 simulations (0.44°)

MENA: 11 simulations (0.44°)

5 simulations (0.22°)

Scoping the NASA Effort

Downscaling Assessment Questions

- Under ideal forcing conditions (e.g., high-quality re-analyses), how good is the RCM at replicating important weather and climate processes/phenomena?
- Under what conditions does downscaling (RCMs driven by GCMs) give valid results?
- Do high-resolution RCMs (5 km or finer) offer anything that can't be obtained via today's "high" but coarser resolution GCMs (25-50 km or coarser)?

High-level methodology

- (1) GCM & RCM Simulations
- (2) Observation-based model performance metrics
- (3) Methodology: 3-Step process for combining 1 & 2

Current focus

Slide 5

Types of Simulations Needed

I. RCM with Observed BCs. Characterize fidelity of fine-grid RCM for important processes/phenomena.
Boundary Conditions from global reanalysis (e.g., MERRA, ERA-INTERIM).
A) Evaluate fine-grid RCM against Observations.

II. Fine- & Coarse-Grid GCM. Identify important processes/phenomena that are & are not represented well by the coarse-grid & fine-grid GCMs.
A) Evaluate fine-grid GCM against Observations Score = fG
B) Evaluate course-grid GCM against Observations Score = cG
C) Compare A) and B) Compare fG and cG
*Note: fine-grid GCM and RCM are meant to have similar resolutions

III. RCM with Coarse-Grid GCM BCs. Dynamic downscaling simulations using fine-grid RCM with boundary conditions from the coarse-grid GCM.
A) Evaluate fine-grid RCM against Observations Score = RG
B) Compare III.A) and II.C) Compare RG, fG, and cG

Narrow Scope – Focus only on 3 Impactful Phenomena

Northeast Wintertime Storms (NESs)

- Extreme precipitation/snowfall events
- Extreme wind events

Midcontinent Summertime MCSs

- Warm / Dry Climate Model Biases
- Extreme weather events

Resolution May Matter To The Proper Representation of The Impacts Of These Phenomena

Integrated Water Mapor (Crm) Nov 30, 2012 15 UEC

West Coast Wintertime Atmospheric Rivers (ARs)

- Crucial for water resources/availability
- Associated with most flooding events

Slide 6

Simulation Framework

Modeling components & setup:

Regional Model: NASA Unified-WRF (based on ARW v3.5.1)

Initial/boundary conditions: MERRA-2 six-hourly re-analyses

Land IC: Land Information System (LIS) 10-yr spin-up of Noah LSM

Period of Record: Nov 1999 to Oct 2010 (11 years)

<u>Nudging</u>: Simulations both **with and without** spectral nudging above PBL (no q nudging)

<u>Domain (right)</u>:

- Pilot study examined 10-mo simulations on domains A and B
- Full study only on B

Domain and run-time details

Domain	nx	ny	total cores	cumulus	shallow cumulus	Quilting cores	Wall-clock time*
B-24 km	332	157	245	Grell 3D	Bretherton & Park	5 x 5	10.9 days
B-12 km	663	313	865	Grell 3D	Bretherton & Park	5 x 5	25.8 days
B-4 km	1987	937	6083	_	_	5 x 40	(ongoing)

Common grid characteristics:

*for spectral nudging run

- 41 vertical levels; p-top: 10 hPa
- <u>Radiation physics</u>: NASA/GSFC SW and LW schemes
- <u>Microphysics</u>: NASA/GSFC 3-ice scheme with graupel
- <u>PBL</u>: MYJ; <u>LSM</u>: Noah with 10-yr LIS spin-up on each grid
- Five output streams: wrfout, wrfdiag, wrf2dout, wrfpress, wrfrst
- All simulations made on NASA Center for Climate Simulation "Discover" supercomputer

Spectral Nudging and Sea Ice in Restarts

- Spectral nudging slow-down on large 4-km domain
 - Spectral nudging ran ~ 10-20 TIMES slower than the control run without nudging; worse performance on large number of cores since each CPU calls the spectral nudging routine
 - <u>FIX</u>: zero-padding added to grid dimensions prior to calling spectral nudging to make grid dimensions a multiple of 10
- Sea ice re-initialized incorrectly during restarts
 - Resulted in solutions diverging immediately after restart
 - <u>FIX</u>: Revised Registry to include TSK_SAVE in Restart files, which is needed to update TSK correctly when sea ice is present
- Both fixes passed on to wrf-help at NCAR

Composite Metric Score

In the spirit of a "portrait diagram", we are developing a set of scalar metrics that:

- 1) score model for representing our target process/phenomena
- 2) use observation-based data (satellite, reanalysis, in-situ),
- 3) focus on impact not underlying physics
- 4) "combine" them into a composite performance score.

NES

NE Winter Storms: Median Storm Intensity

15

Summer MCS: JJA Mean Rainfall

****NOTE: Will be examining STIV QPE next!**

Slide 13

Summer MCS: JJA Mean Eastward Propagation

****NOTE: Will be examining STIV QPE next!**

Slide 14

West Coast Winter Atmospheric Rivers (AR)

IVT-based AR Detection for Global and Regional Studies

- Pixel-wise IVT thresholding \rightarrow AR shape
- Location of max. IVT \rightarrow AR axis
- Additional considerations (length, width, etc.)

(IVT=Mean, time-averaged Vertically Integrated Water Vapor Transport; Zhu and Newell 1998 [MWR])

West Coast Winter Atmospheric Rivers

Evaluation of AR Precip Spatial Variability vs. NLDAS

Spatial variability of the ARprecipitation fraction over WUS in the eight NU-WRF runs is evaluated using the Taylor diagram and "Tian" score

Performance varies widely, but a general pattern emerges.

- Smaller domain (B) outperformed larger domain (A)
- Finer resolution runs perform better than coarser resolution runs.
- Runs with spectral nudging outperforms runs w/o it.
- Using smaller domain, finer spatial resolution, and spectral nudging yields better results.

West Coast Winter Atmospheric Rivers

AR Frequency

B24 Control vs. Nudging:

- Similar AR frequency and AR IVT, 1999-2010
- Probably due to close proximity of western lateral boundary

AR Meridional IVT

- Complete domain B 4-km spectral nudging and Control (non-nudged) runs
- Perform "true" downscaling experiment of NU-WRF driven by GEOS-5 simulations
- Inter-compare NU-WRF downscaled runs to GEOS-5 high-res global simulations
- Summarize results using our developed metrics and compare against traditional downscaling metrics
- Make simulation data available to community

NASA Team Acknowledgement

Name	Affiliation	Name	Affiliation
Jonathan Case	ENSCO, Inc/MSFC	Paul Loikith	CalTech/JPL
Daniel Duffy	GSFC	William Putman	GSFC
Duane Waliser	JPL	Brent Roberts	MSFC
Takamichi Iguchi	UMD/GSFC	Joe Santanello	GSFC
Eric Kemp	SSAI/GSFC	Baijun Tian	JPL
Jinwon Kim	UCLA/JPL	Yudong Tian	UMD/GSFC
Kyo Lee	JPL	Di Wu	UMD/GSFC
Weile Wang	CSU/ARC	Brad Zavodsky	MSFC
Wei-Kuo Tao	GSFC	Bin Guan	UCLA/JPL
Kim Whitehall	JPL	Christa Peters-Lidard	GSFC
Max Suarez	GSFC	Tsengdar Lee	NASA HQ
William Gutowski*	Iowa State Univ.	Linda Mearns*	NCAR
Ruby Leung*	Pacific NW Nat'l Lab		

*External project advisors