Assessing hydro-climate impact of a large-scale perennial biofuel crops expansion over the conterminous U.S.

Meng Wang¹, Melissa Wagner², Matei Georgescu², Gonzalo Miguez-Macho⁴, Ioannis Kamarianakis¹, Alex Mahalov¹

¹School of Mathematical and Statistical Sciences,
² School of Geographical Sciences and Urban Planning,
³Global Institute of Sustainability,
Arizona State University, Tempe, AZ, USA
⁴Nonlinear Physics Group, Faculty of Physics,
Universidade de Santiago de Compostela, Galicia, Spain

16th Annual WRF Users' Workshop, Boulder, CO Jun 17th, 2015

1. Introduction Importance & Duel feedback impact of Perennial biofuel crops expansion

Benefits of this second-generation renewable bioenergy source:

- 1) high bioenergy productivity
- 2) low nutrient inputs requirement
- 3) Biogeochemistry effect:
 - e.g. absorbing GHGs as it grows

NB: Shares for biodiesel have not vet been fixed for the period 2014-2022, the shares used are those proposed for 2014 and 2015. Sources: United States Environmental Protection Agency, United States Energy Information Administration

J. D. Glover, C. M. Cox, J. P. Reganold, Sci. Am. 297(August), 82 (2007).

Latent heat flux 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 APR MAY JUN JUI AUG SEP OCT Soil moisture 0.30 0.34 0.32 0.3

Annual crops V.S. Perennial crops

1. Introduction

Land suitability and expansion scenario for perennial biofuel crops

- Corn to perennial biofuel: competition between food and fuel
- Planting in abandoned and degraded land area can eliminate it.

Studies on long-term, continental scale and undergoing climate extreme conditions remains limit but is necessary

CONUS Drought index

Source: http://www.ncdc.noaa.gov/extremes/cei/graph Source: http://www.epa.gov/climatechange/science/indicators/Weather-climate/drought.html

1. Introduction Research questions

Research questions:

(1)	What is the large-scale spatial distribution of hydro-climate impact due to the perennial biofuel crops expansion?
(2)	Where are the 'hot spots' for further study?
(3)	What are the association among those feedbacks?

2. Methodologies 2.1. Simulation domain

Model Version:	WRF V3.6 coupled to Noah LSM
Horizontal (innermost) Grid:	ΔX , ΔY , 20-km
Number of Points:	309 (X-dir.); 189 (Y-dir.)
Vertical Levels:	30 levels
Initialization Time:	Dec 1,1999, 00Z
Terminal Time:	Dec 31, 2009, 21Z
Analysis Time:	Jan 1, 00Z, 2000 to Nov 30, 21Z, 2009

2. Methodologies 2.2. Flow-chart of Process

2. Methodologies

2.3. Simulations

Sensitivity of physics (Ensemble of 14 simulations)

Physics options		E 2	E3	E4	E5	E 6	E 7	E 8	E 9	E10	E11	E12	E13	E14	explanation
Microphysics (mp_physics)		3	3	3	3	3	3	16	16	16	3	3	3	3	3) WSM 3-class; 16) WDM 6-class
Shortwave Radiation (ra_sw_physics)		4	4	4	4	4	4	4	4	4	1	1	4	4	1)Dudhia; 4) RRTMG
Surface Layer (sf_sfclay_physics)		2	2	2	1	1	1	1	1	1	1	1	1	1	1) MM5 Similarity Scheme; 2) Eta Similarity Scheme
Planetary Boundary layer (bl_pbl_physics)		2	2	2	1	1	1	1	1	1	1	1	1	1	1) YSU scheme; 2) Mellor-Yamada-Janjic (Eta) TKE scheme
Cumulus Parameterization (cu_physics)		1	1	1	1	1	1	1	1	1	1	5	1	5	1)Kain-Fritsch scheme ; 5)Grell 3D
spectral nudging		no	yes	yes	no	yes	yes	no	yes	yes	yes	yes	yes	yes	
spectral nudging wavelength			3*2	4*3		3*2	4*3		3*2	4*3	4*3	4*3	4*3	4*3	
Initial condtions (1month)		no	no	no	no	no	no	no	no	no	yes	yes	yes	yes	

Sensitivity	of
expansio	n:

Simulation	Perennial biofuel parameter
Baseline	default
Deroppial	rooting depth only
(piocowico	albedo only
(piecewise approach)	vegetaton fraction only
approach	All

Spatial comparison of seasonal average 2m temperature in Summer

Comparison of areal and seasonal average bias and spatial variability

Note: Regrid into 0.5/0.25 degree and maskout regions outside U.S.

Areal and seasonal average in bar +/- spatial variability in error bar(one standard deviation of bias over entire field).

T2 based on Ob1

T2 based on Ob2

Trade-off between spatial variability of T2 and that of precipitation; Ensemble member 12/14 performs relatively better considering the mean and spatial variability.

3. Results 3.2 Sensitivity of perennial expansion

One year experiment:

perennial expansion scenario simulation - control simulation Averaged difference in summer

Physical mechanism:

More water is extracted from soil into atmosphere through ET, latent heat flux is enlarged, which consequently causes a decrease in sensible heat flux and surface temperature.

4. Conclusion and Future Work

- Due to perennial expansion, the maximum cooling effect is about 0.5°C; unintended effect of soil moisture depletion is greater than of 0.05 m³ m⁻³, and latent heat flux is increased generally between 10-20 W m⁻².
- More water is extracted from soil into atmosphere through ET, latent heat flux is enlarged, which consequently causes a decrease in sensible heat flux and surface temperature.
- There exists indirect spatial correspondence between soil moisture reduction and thermal effects.
- Conduct decadal time scale, ensemble-based simulations, using piecewise approach in assessment of biofuel expansion by incorporating biophysical characteristics (e.g. LAI, albedo, vegetation fraction).
- Repeat experiments using NOAH-MP and LEAF-2 to examine impacts on above and groundwater resources.

Acknowledgments. This work was funded by NSF Grant EAR-1204774 and NSF Grant DMS-1419593

Meng Wang: E-mail address: <u>mwang79@asu.edu</u>

Thank you!