# Evaluation of PBL Parameterizations in WRF at Sub-Kilometer Grid-Spacing

#### Hyeyum (Hailey) Shin and Jimy Dudhia

National Center for Atmospheric Research

With acknowledgement to

Peggy LeMone (MMM/NCAR)

Backgrounds

Methods

Results

Summary ■

### **PBL** parameterization

### Role in atmospheric models

To quantify effects of unresolved turbulence to grid-box mean



via representation of unresolved vertical transport

### **Evaluation studies**

| Typical coarse grid spacing<br>(most of previous studies) |                                | Fine grid spacing<br>(in this study) |  |
|-----------------------------------------------------------|--------------------------------|--------------------------------------|--|
| Model<br>Grid Size                                        | O(1-100 km)                    | <i>O</i> (0.1-1km)                   |  |
| Evaluated<br>Variables                                    | $\overline{w'c'},\overline{c}$ | "Resolved" turbulence statistics     |  |

Backgrounds

# Model Grid Spacing: O(0.1-1km)



### For coarse grid spacing

✓ PBL schemes have been designed for  $\Delta >> I$ .

#### For recent find grid spacing

- ✓ There are no traditional PBL schemes designed for △ ~ /.
- ➔ It is not clear how various types of PBL schemes behave on the find grid mesh.

# **Evaluated variables: "Resolved" turbulence statistics**



### At coarse grid spacing

- ✓ **None** of turbulence is **resolved**.
- ✓ Evaluation focus:

$$\frac{\partial \overline{c}}{\partial t} = \cdots - \frac{\partial w' c'}{\partial z}$$

Mean and parameterized total flux

#### At recent fine grid spacing

- ✓ Turbulence is **partly resolvable**.
- High-resolution modeling is aimed at improving resolved fields.
- → Resolved turbulence statistics are important parameters to be evaluated.

### In this study

The performance of PBL parameterizations in WRF model is evaluated at sub-kilometer grid spacing, for resolved turbulence statistics.

### **Methods**

 Evaluation using reference data: <u>spatially filtered LES output</u> The most popular way to give "reference" for evaluating parameterizations at kilometric and sub-kilometer scales (Honnert et al. 2011; followed by Dorrestijn et al. 2013; Shin and Hong 2013)

# 2. Selected PBL schemes: <u>characterized by different nonlocal terms</u>

Importance of nonlocal terms in sub-kilometer and kilometric grid spacing

(Honnert et al. 2011; Shin and Hong 2013, 2015)

Methods

### **Reference data**

#### Spatially filtered LES output for sub-kilometer grid spacing

(Cheng et al. 2010; Honnert et al. 2011; Dorrestijn et al. 2013; Shin and Hong 2013)



reference "subgrid-scale" perturbations: w' = w - w Methods

### **Experimental setup**

#### An idealized convective boundary layer (CBL)



#### **Model setup**

|             | Subgrid-Scale<br>vertical transport | Subgrid-Scale horizontal transport | Grid spacing<br>(m) | No. of grids                                       | Domain size<br>(km²)                               |
|-------------|-------------------------------------|------------------------------------|---------------------|----------------------------------------------------|----------------------------------------------------|
| LES         | 3D TKE                              | 3D TKE                             | 25                  | 320 <sup>2</sup>                                   | 8 <sup>2</sup>                                     |
| Reference   | Filtered from the LES               |                                    | 250, 500, 1000      | 32 <sup>2</sup> , 16 <sup>2</sup> , 8 <sup>2</sup> | 8 <sup>2</sup>                                     |
| Experiments | PBL schemes                         | 3D TKE                             | 250, 500, 1000      | 32 <sup>2</sup>                                    | 8 <sup>2</sup> , 16 <sup>2</sup> , 32 <sup>2</sup> |

# An overview of PBL parameterizations in WRF

### **Representation of unresolved vertical transport**



1<sup>st</sup>-order vs. 1.5-order (TKE) nonlocal vs. local

An important part that determines *a scheme's performance at sub-kilometer grid spacing* 

|      | K <sub>c</sub>                                       | C <sub>NL</sub>                                                                                                                                      |
|------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| YSU  | 1 <sup>st</sup> -order                               | $C_{NL} = K_c \gamma_c + \overline{w'c'}_h \left(\frac{z}{h}\right)^3$                                                                               |
| ACM2 | $K_{u,v} = k w_s z \left( 1 - \frac{z}{h} \right)^2$ | $C_{NL} = M2u\overline{c}_{1}^{\Delta} - M2d_{k}\overline{c}_{k}^{\Delta} + M2d_{k+1}\overline{c}_{k+1}^{\Delta}\frac{\Delta z_{k+1}}{\Delta z_{k}}$ |
| EDMF | 1.5-order                                            | $C_{NL} = \mathbf{M}_{u} \left( c_{u} - \overline{c}^{\Delta} \right) \ \mathbf{M}_{u} = a_{u} w_{u}$                                                |
| TEMF | $K_c = l\sqrt{e}S_c$                                 | $C_{NL} = \mathbf{M}_u \left( c_u - \overline{c}^{\Delta} \right) \ \mathbf{M}_u = a_u w_u$                                                          |
| MYNN |                                                      | 0                                                                                                                                                    |

Methods ■ ■ ■ ■

Results 🗖 🗖 🗖 🗖 🗖

Summary ■

### (1) Temperature profile

### **Examples of previous studies**



Fine grid spacing ( $\Delta \sim I$ )



Figure is taken from Shin and Hong (2011)

Figure is taken from LeMone et al. (2013)

# (1) Temperature profile

#### At sub-kilometer and 1-km grid spacing



- 1. The local PBL scheme reproduces a weakly stable/neutral profile.
  - 2. There is almost no resolution dependency.

# (2) Vertical heat transport profile

#### "Parameterized" vertical heat transport



- 1. None of them are scale-aware: little resolution dependency.
- 2. Each parameterization has its own best-performing grid size.

Results

## (2) Vertical heat transport profile

#### **Temperature profile**



# (2) Vertical heat transport profile

#### **Compensation between parameterized and resolved parts**



All the tested PBL parameterizations succeed in simulating total (resolved + parameterized) vertical transport, therefore mean temperature profiles.

High-resolution modeling is aimed at improving resolved fields.

### (3) Resolved w spectrum



### (4) PDF of resolved w

#### Statistical representation of the distribution of w



**Reference: positively skewed** (a few strong thermal updrafts surrounded by a large number of weak inter-thermal downdrafts)

### Summary

### The performance of five PBL parameterizations in WRF model is evaluated at sub-kilometer grid spacing, for resolved turbulence statistics.

|                       |              | Δ = 250 m | 500 m | 1000 m   |                         |
|-----------------------|--------------|-----------|-------|----------|-------------------------|
| Overestimated<br>SGS  | YSU<br>ACM2  | 0         | 0     | 0        | mean & total transport  |
|                       |              |           |       | 0        | parameterized transport |
|                       |              |           |       |          | energy spectrum (scale) |
|                       |              |           |       |          | histogram (structure)   |
|                       | EDMF         | 0         | 0     | 0        | mean & total transport  |
|                       |              |           | 0     |          | parameterized transport |
|                       |              | Δ         | Δ     |          | energy spectrum (scale) |
|                       |              | 0         | 0     | 0        | histogram (structure)   |
| Underestimated<br>SGS | TEMF<br>MYNN | 0         | 0     | <b>O</b> | mean & total transport  |
|                       |              | 0         |       |          | parameterized transport |
|                       |              | Δ         | Δ     |          | energy spectrum (scale) |
|                       |              | 0         |       |          | histogram (structure)   |

# New PBL option in WRFV3.7: Shin and Hong (2015)

✓ Coded based on YSU PBL,

with modified <u>convective</u> PBL mixing for " $\Delta < 2$ \*PBL\_Height".

✓ Prescribed nonlocal heat transport profile

YSU:  $K_h \gamma_h$  (correction term)  $\rightarrow$  New: LES-based nonlocal transport profile

 $\checkmark\,$  Explicit grid-size dependency function is included.

(Honnert et al. 2011; Shin and Hong 2013)

 $\checkmark$  A bug in the new option (q<sub>v</sub> tendency) has been fixed. Please, contact me.

|     | Δ = 250 m | 500 m | 1000 m |                         |
|-----|-----------|-------|--------|-------------------------|
| New | 0         | 0     | 0      | mean & total transport  |
|     | 0         | 0     | 0      | parameterized transport |
|     | Δ         | Δ     |        | energy spectrum (scale) |
|     | 0         | 0     |        | histogram (structure)   |

Thank you! Questions and comments? hshin@ucar.edu



### (5) Scale dependency of w histogram



### (6) Horizontal w at $0.5z_i$

