

WRF for realistic wind farm siting

Hugo Hartmann, Wim van den Berg, Bas de Haan, Daniel van Dijke

Presentation 6A.4 – 16th Annual WRF User's Workshop, 15-19 June 2015

Wind energy is booming business

- Worldwide 200,000 turbines
- Nominal capacity 370 GW
 - 150 million households (4%)
 - China 31%, EU 25%, US 18%
- Doubling every three years

↑wind energy market = ↑ number of customers

- Asking for accurate and reliable:
 - Wind climatology data-sets
 - Real-time wind/power forecasts (incl. probabilities)
- For what?
 - Optimize trading strategy
 - Efficiently use time available in weather windows
- PowerCast
 - Statistical product (MOS)
 - Power model to convert wind forecast
- into power

MeteoGroup

WRF potential in wind power forecasting

- Since WRF 3.3: Fitch et al (2012) parameterization scheme
- How does it compare with PowerCast?
- Preliminary results presented on a poster last year
- This presentation: verification study for the onshore wind farm "Farr" (Scotland)

MeteoGrou

MeteoGroup

Farr wind farm (RWEInnogy UK

Location: South of Inverness, Scotland

Height: 400-500 m above sea level

Turbines:40 Siemens SWT-2.3-82

Cut-in/out speed:

Hub height: 60 m

Spacing:

Set-up WRF hindcast

- Period:
- WRF version:
- WRF domains:
- No. turb./grid cell:
- Physics:
- Input data:
- Comparison:
 - PowerCast: t/m +36
 - WRF:

Sept. 1, 2013 → Jan. 31 2014
3.3.1
9, 3 and 1 km
40, 13, 4
MYNN, Noah, WSM6, RRTM,
Goddard, Grell-Devenyi (9km)
ERA-Interim 0.75°

12 UTC \rightarrow forecast +12

PowerCast

WRF verification 3.1.1 - 3.2.1 - 3.3.1 - 3.6.1

- e No significant improvement among versions (apart from 3.6.1?)
- Change from 6 to 12 hours 3DVAR does improve

Results RMSE - September 2013

Wind (m/s)	WRF 9km	WRF 3km	WRF 1km
September	3.8	3.7	3.1

- RMSE is based on "farm average" wind speed (subsequent slides also "total farm power")
- Expected behavior: ↑ horizontal resolution = ↓ RMSE
- MAE shows similar behavior

Time series - September 2013

Results

MeteoGroup

Observatio ns

WRF 1km

Results RMSE – All months

Wind (m/s)	WRF 9km	WRF 3km	WRF 1km	
September	3.8	3.7	3.1	
October	3.7	3.3	2.8	
November	3.1	3.7	3.5	
December	7.5	8.0	7.6	
January	3.8	3.5	3.0	
Average	4.4	4.5	4.0	

- What happens in November / December?
- High power RMSE in December / January, both in WRF and PowerCast
- 12 RMSE WRF 1 km close to that of PowerCast

Results

13

Time series - December 2013

Observation data questionable (metadata not available) \rightarrow RMSE december unreliable What happens on December 24/25? \clubsuit MeteoGroup

Observatio ns

WRF 1km

Results

Analysis of Christmas storm (December 24, 12 UTC)

- Again: questionable wind observations...
- PowerCast: Statistical method underestimates high wind speed, cut-out wind speed not exceeded
- WRF: Better in extremes; wind speed exceeds cut-out speed → power drops

Results

Skill extreme events: contingency tables / Hanssen-Kuipers score

- Event: < ~cut-in speed (< 0.042 MW)
- Evaluated with: Hansen-Kuipers score
 - Hit rate False alarm rate
 - Score = 1 is perfect skill

September 2013		Observations		
		< 0.042 MW	> 0.042 MW	
WRF 1km	< 0.042 MW	97	24	
	> 0.042 MW	51	524	

September 2013		Observations		
		< 0.042 MW	> 0.042 MW	
PowerCast	< 0.042 MW	35	9	
	> 0.042 MW	113	539	
Hanssen-Kuipers		0.22		

 WRF has a better skill for extreme events (here: turbine cut-in speed/ power)

• WRF 1km: Too much shielding?

Results Resolution effect: analysis October 6/7

17

Is WRF modelling the wind speed variation correctly in rugged terrain?

Conclusions

- In general: WRF 1km power forecast quality (RMSE) is comparable to PowerCast
- Pay attention to the quality of the wind farm observations, availability of metadata (e.g. turbine switch-on/off, maintenance) is crucial
- WRF is better in capturing extreme events (high/low wind speeds) compared to the statistical PowerCast product
- Increasing resolution does not always improve the forecast; is WRF modelling the wind speed variation correctly in rugged terrain?

Wind farm scheme incorporated in MeteoGroup's operational WRF 3.6.1 forecasts...

MeteoGroup

Thank you, questions?

Contact E. hugo.hartmann@meteogroup.com W. research.meteogroup.com

