Bridging the Gap between Research and Operations using the Mesoscale Model Evaluation Testbed (MMET)

> 16th Annual WRF Users' Workshop 18 June, 2015

Tracy Hertneky, Michelle Harrold, and Jamie Wolff

National Center for Atmospheric Research Research Applications Laboratory and Developmental Testbed Center

Developmental Testbed Center

DTC Mission

- The fundamental purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations
 DTC facilitates:
 - O2R transition by making the operational NWP systems available to the research community & providing community user support
 - R2O transition by performing testing & evaluation of new NWP innovations in a functionally similar operational environment over an extended period
- MMET was established by the DTC to provide a common framework for testing and evaluation to assist in streamlining the R2O process

Mesoscale Model Evaluation Testbed (MMET)

Why: Assist the research community in efficiently demonstrating the merits of a new development

• Provide a common framework for testing; allow for direct comparisons

What: Mechanism to efficiently *assist* research community *with initial stage of testing*

- Provide model input and observational datasets to utilize for testing
- Establish and publicize baseline results for select operational models

Where: Hosted by the DTC; served through Repository for Archiving, Managing and Accessing Diverse DAta (RAMADDA)

http://www.dtcenter.org/eval/meso_mod/mmet/index.php

MMET Case Inventory

Date(s)	Meteorological Scenario	
20090228	Mid-Atlantic <i>snow storm</i> -NAM high QPF shifted too far north	
20090311	High dew point predictions by NAM over the upper Midwest and in areas of snow	
20091007	HIRESW runs underperformed compared to coarser NAM model	
20091217	"Snowpocalypse '09"	
20100428-0504	Historic Tennessee <i>flooding</i> associated w/ an atmospheric river	
20110404	Record breaking <i>severe</i> report day	
20110518-26	Extended <i>severe weather</i> outbreak covering much of the Midwest and into the eastern states	
20111128	Cutoff low over SW US	
20120203-05	Snow storm over Colorado, Nebraska, etc.	
20120628	Derecho event that began in Iowa and traveled eastward through the Mid-Atlantic states	
20130729	Mesoscale convective system (MCS) over SE Kansas	
20130908-14	Historic Colorado <i>flooding</i> associated w/ long duration and warm rain processes	
20140105	Arctic air outbreak impacting much of the United States east of the Rockies	
20110214-17	Atmospheric river impacting the West Coast	

Operational Baselines

- Baseline results for select Operational Configurations (OC) using:
 - Weather Research and Forecasting Advanced Research WRF (WRF-ARW)
 - Air Force OC
 - NOAA Environmental Modeling System Nonhydrostatic Multiscale Model on the Bgrid (NEMS-NMMB)
 - North American Mesoscale Forecast System (NAM) OC

Physics Suite	WRF-ARW Air Force OC	NEMS-NMMB NAM OC
Microphysics	WRF Single- Moment 5	Ferrier-Hires
Radiation (LW/SW)	RRTM/Dudhia	GFDL/GFDL
Surface Layer	Monin-Obukhov similarity theory	Mellor-Yamada- Janjic
LSM	Noah	Noah
PBL	Yonsei University	Mellor-Yamada- Janjic
Convection	Kain-Fritsch	Betts-Miller-Janjic

MMET Datasets of Opportunity

- Initialization datasets
 - NAM on NCEP grid 221 (32 km North American domain)
 - GFS on 0.5° grid
- Pre-processing datasets
 - WRF/NEMS namelists and metgrid output
- Model configurations
 - namelist/configuration files
- Post-processing scripts
 - Parameter files and run scripts
- Graphics of model output and scripts
 - NCL scripts and plots for various fields
- Verification datasets
 - Raw and processed NDAS and precip obs data
 - NCL scripts and plots for accumulated precip
- Verification output and scritps
 - MET configuration files and run scripts
 - MET gridStat and pointStat output
 - Verification plots

Developmental Testbed Center-

New MMET Features

- New WRF-ARW operational baseline utilizing RAP/HRRR physics configurations
- Addition of the RAP 13 km initialization dataset
- Implementation of the Gridpoint Statistical Interpolation (GSI) system
- Automated re-gridding capability within MET
- Addition of a hurricane case using the Hurricane WRF (HWRF)

New WRF-ARW baseline utilizing the RAP and HRRR OC

- RAP physics suite used for parent domain
- HRRR physics suite used for nests

Physics Suite	WRF-ARW RAP/HRRR OC
Microphysics	Thompson
Radiation (LW/SW)	RRTMG/RRTMG
Surface Layer	MYNN
LSM	RUC
PBL	MYNN 2.5
Convection	Grell-Freitas (RAP)

Addition of 13 km RAP initialization dataset

Inclusion of RAP provides the user community with an additional option for initial and lateral boundary conditions from an operational model

Gridpoint Statistical Interpolation (GSI) System

- Currently being implemented for use in WRF and NEMS MMET baseline configurations
 - Using the community version (currently v3.3)
 - Includes a 6-hr warm start spinup option with the assimilation of GDAS observation data which includes conventional and satellite radiance data
- All necessary files to run GSI are provided for each case
 - Script for running GSI and fixed files needed for the system to properly run
 - GDAS observation data

http://www.dtcenter.org/com-GSI/users/

Re-gridding capability within MET

METv5.1 (coming soon) includes a basic capability for automated re-gridding

DASHED = RAP-13 ; SOLID = GRID 221

Interpolation options:

- Unweighted mean
- Distance-weighted mean
- Min, max, median
- Least squares
- Bilinear
- Budget

Re-gridding options:

- To forecast grid
- To observation grid
- To pre-defined grid (e.g. NCEP G221, user generated)
- To a grid specification (similar concept to UPP *copygb*)

ALSO: Stand-alone tool available for re-gridding outside statistical tools

Summary

- MMET serves as a common testing framework for testing and evaluation to assist in streamlining the R2O process
- Provide initialization/observation datasets as well as baseline results for 14 high-impact/routine weather cases
- New MMET capabilities include:
 - New baseline using the RAP/HRRR physics suites
 - Addition of 13-km RAP initialization data
 - Implementation of GSI
 - Re-gridding capability within MET
 - Addition of a hurricane case

Questions? Thank You!

Contact information for MMET Team

Michelle Harrold Tracy Hertneky Jamie Wolff harrold@ucar.edu hertneky@ucar.edu jwolff@ucar.edu

★ Instructional Session ★

"Demonstrating the utility of the Mesoscale Model Evaluation Testbed (MMET)"

> Friday, June 19th 10:30 AM – 12:00 PM