Wet Removal of Soluble Trace Gases in Deep Convective Clouds: New WRF-Chem Developments

Megan Bela megan.bela@colorado.edu University of Colorado, Boulder

Owen Brian Toon, Mary Barth, Alan Fried, Yunyao Li, Kristin Cummings, Kenneth Pickering, Cameron Homeyer, Hugh Morrison, Qing Yang, Dale Allen, Daniel O'Sullivan

Instrument Teams: DACOM, ESRL, CAMS, DFGAS, P-CIMS, S-CIMS, GT-CIMS, VCSEL, DLH, CDP, 2D-S

Atmospheric and Oceanic Sciences

O_3 formation in UT controlled by HO_x and NO_x ; many HO_x precursors are soluble

 How well does WRF-Chem represent wet removal of soluble species in a multicellular storm in Oklahoma as a example?

- How well does WRF-Chem represent wet removal of soluble species in a multicellular storm in Oklahoma as a example?
 - Inflow tracers confirm boundary layer region sampled by aircraft is entrained by model storm
 - Adding variable ice retention, WRF-Chem represents wet removal in an Oklahoma multicellular storm

 How much does wet removal of soluble species vary among deep convective storms in different regions (and why)?

- How much does wet removal of soluble species vary among deep convective storms in different regions (and why)?
 - Regional differences seen in removal of CH₃OOH, H₂O₂, and HNO₃
 - Substantial mid-tropospheric entrainment simulated

Good Inflow and Outflow Observations Taken During DC3 of May 29, 2012 Multicellular Storm in Oklahoma

High-Resolution WRF-Chem Simulates Location and Structure of DC3 May 29, 2012 Oklahoma Storm

Good Observations Taken of Vertical Structure of DC3 May 29, 2012 Oklahoma Storm

Inflow Tracers Confirm Southern Boundary Layer Sampling Region Entrained by Model Storm

Tracer value indicates fraction of air originating from given region and altitude

Highest fraction of inflow air in core originates from 1-2 km a.g.l.

WRF-Chem Wet Scavenging Scheme Assumes 50% of HNO₃ Retained in Ice

All Other Species Completely Ejected to Gas Phase When Cloud Water Freezes

WRF-Chem Sensitivity Simulations Constrain Ice Retention Fractions

5 Simulations:

No scavenging r = 0 all species r = 0.5 all species r = 1 all species r varies by species

Fraction Removed (FR) Measures Net Transport of Chemical Species from Storm Inflow to Outflow

 $Y = Mean [S_x]/[CO] in outflow <$

FR = Y/X

 $X = Mean [S_x]/[CO] value in inflow$

Fractions Removed Vary Among Species and Are Affected by Ice Retention Fraction

Fractions Removed Vary Among Different Storm Types

Fractions Removed Vary Among Different Storm Types

Fractions Removed Vary Among Different Storm Types

Anvil Sampling Region Is Also Affected by Entrainment of Free- and Upper-Tropospheric Air

However, Up to 80% of Air in Core Originates from 1-2 km a.g.l.

Air in Anvil Sampling Region Originates from All Levels

0200 UTC

Conclusions

- Inflow tracers confirm boundary layer region sampled by aircraft is entrained by model storm
- Adding variable ice retention, WRF-Chem represents
 wet removal in an Oklahoma multicellular storm
- Regional differences seen in removal of CH₃OOH, H₂O₂, and HNO₃
- Substantial mid-tropospheric entrainment simulated

Thank you!

megan.bela@colorado.edu