RAP/HRRR: Hourly-Updating Weather Forecast Models

17th WRF Workshop •

Hourly Updating Models

Operational Implementations

01 May 2012

RAPv1: Adoption of GSI, WRF-ARW and unified post
Enabled use of community-developed software

25 Feb 2014

RAPv2: Hybrid EnKF-3DVar data assimilation

Significant improvement in upper-air forecasts

30 Sep 2014

- HRRRv1: 3-km Radar DA in WRF-ARW
- Significant improvement in convective forecasts

August 2016

- > RAPv3/HRRRv2 (a.k.a. RAPX/HRRRX): Aerosol Thompson MP, improvements to
- > MYNN PBL, RUC LSM, RRTMG Rad, Grell-Freitas cumulus
- Significant improvement in surface forecasts

Benjamin et al. 2016, A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 1669-1694.

RAP/HRRR Summary of Changes

Pre-Operational RAP/HRRR 2010 Starting Point

Model	Run at:	Domain	Grid Points	Grid Spacing		Vertie Leve	cal els	Il Pressure 5 Top		e Boundary Condition		Initialized	
RAP	GSD	North America 7	58 x 567	13 km		50		10 mb		GFS		H (C)	ourly /cled)
HRRR	GSD	CONUS	1799 x 1059	3 km		50 20 mb			RAP		RA	P I.C.	
Model	Version	Assimi	lation	Radar DA		Radiat LW/S	ion W	Wicrophysics		Cumulus Param		PBL	LSM
RAP	WRF-ARW v3.1.1+	GSI 3D	-VAR	13-kn	n DFI	RRTN Godda	// ard	Thompson v3.1.1		G3 + Shallov	v	MYJ	RUC 6-lev
HRRR	WRF-ARW v3.1.1+	/ Nor	ne	None		RRTN Godda	/l/ ard	Thompson v3.1.1		None		MYJ	RUC 6-lev
Model	Horiz/Vert Advection	Scalar Advectio	Upper- n Dam	Level	6 th (Diff	Order usion	sw	Radiation	Lar	nd Use	MP Li	Tend mit	Time- Step
RAP	5 th /3rd	Monotonio	Diffu	sive 2 (′es .25		30 min U		JSGS 0.0		1 K/s	60 s
HRRR	5 th /3rd	Monotonio	Diffiu	sive 2		No		30 min US		SGS 0.01		1 K/s	18-23 s

17th WRF Workshop • RAP/HRRR

RAPv3/HRRRv2 Summary of Changes

Operational RAPv2/HRRRv1

Model	Run at:	Domain	Grid Points	Grid Spacing		Vertie Leve	Vertical Pressur Levels Top		е	Boundary Conditions		s Initi	Initialized		
RAP	GSD, NCO	North America	758 x 567	13	13 km			10 mb		GFS		Ho (cy	ourly cled)		
HRRR	GSD, NCO	CONUS	1799 x 1059	3 km		50		20 mb		RAP		Hour foreca cy	ly (pre- ast hour (cle)		
Model	Version	Assim	ilation	Radar DA		Radiati LW/S	ion W	Microphysi	cs	Cumulus Param		PBL	LSM		
RAP	WRF-ARV v3.4.1+	V GSI Hyl VAR/En	orid 3D- Isemble	13-km DFI		RRTN Godda	/l/ ard	Thompson v3.4.1		G3 + Shallow		G3 + Shallow		MYNN	RUC 9-lev
HRRR	WRF-ARV v3.4.1+	GSI 3I	D-VAR	3-km 15-min LH		m RRTM/ n LH Goddard		Thompson v3.4.1	None		;	MYNN	RUC 9-lev		
Model	Horiz/Ver Advectior	t Scalar Advectio	Upper- on Dam	Level 6 th 0 bing Diff		Order usion	SW	/ Radiation Update	La	nd Use	MF	P Tend .imit	Time- Step		
RAP	5 th /5 th	Positive Definite	- w-Ray 0.	leigh भ २ 0		/es .12	es 10		10 min M Fra		1ODIS actional 0.0		60 s		
HRRR	5 th /5 th	Positive Definite	- w-Ray 0.	<mark>/leigh</mark> 2	h No		5 min F		M Fra	MODIS ractional		07 K/s	20 s		

17th WRF Workshop • RAPv2/HRRRv1

RAPv3/HRRRv2 Summary of Changes

Implementation RAPv3/HRRRv2

Larger RAP Domain

Newer Model Version More Ensemble Weight Advanced Physics

Seasonal Vegetation Fraction/Leaf Area Index

Model	Run at:	Domain	Grid Points	Grio Spaci	d ing	Vertio Leve	cal Pressure Is Top		Boundary Conditions		Initialized				
RAP	GSD, NCO	North America	953 x 834	13 km		.m 50		10 mb		GF	S	Ho (cy	ourly cled)		
HRRR	GSD, NCO	CONUS	1799 x 1059	3 km		50 20 mb		20 mb	RAF		AP forec		irly (pre- cast hour cycle)		
Model	Version	Assin	nilation	Radar	DA	Radiation LW/SW		Microphysio	cs	Cumulı Param	is 1	PBL	LSM		
RAP	WRF-ARV v3.6+	V GSI I Ensemb	Hybrid le to 0.75	13-km	DFI	RRTM RRTM	G/ IG	Thompson Aerosol v3.	6	GF + Shallov	۲ ۷	VYNN v3.6	RUC v3.6		
HRRR	WRF-ARV v3.6+	V GSI Ensemb	Hybrid le to 0.75	3-kn 15-min	3-km 15-min LH		RRTMG/ Thomps RRTMG Aerosol		None		Г	VYNN v3.6	RUC v3.6		
Model	Horiz/Ver Advectior	t Scalar Advectio	· Upper- on Dam	Level 6 th ping Dif		l 6 th Order Diffusion		SW Radiation Update		Land Use		Tend mit	Time- Step		
RAP	5 th /5 th	Positive Definite	e- w-Ray e 0.1	leigh 2 (leigh Y 2 0		/es .12		20 min N		AODIS easonal 0.07		1 K/s	60 s
HRRR	5 th /5 th	Positive Definite	e- w-Ray e 0.1	rleigh 2	۲ 0.2 te	res 5 (flat err)		5 min with SW-dt	MODIS Seasonal		0.07 K/s		20 s		

17th WRF Workshop • RAPv3/HRRRv2

RAPv1 RAPv2 RAPv2 - RAPv1 RAP RMSE Vector Winds (~ 1 year of matched data) Improvement with inclusion of ensemble (flow-dependent) DA

17th WRF Workshop

HRRR Performance

²⁸ Jun 2016 • 6

RAP/HRRR Performance History

17th WRF Workshop • RAP Performance

RAP/HRRR: Improving Forecast Skill

17th WRF Workshop • RAP/HRRR Radar DA

RAP/HRRR Gridded Verification System Using MRMS

17th WRF Workshop HRRR Verification

HRRR Performance History

HRRR reflectivity verification by year

17th WRF Workshop • HRRR Performance

Crossover in forecast skill between Nowcasting/Extrapolation vs Numerical Weather Prediction

HRRRv2 Real-Time Evaluation: Reflectivity

17th WRF Workshop • HRRR Performance

RAP/HRRR Implementation History

17th WRF Workshop • HRRR Performance

HRRRE

Real-Time Web Graphics

http://rapidrefresh.noaa.gov/HRRRE

- Single core (ARW)
- Ensemble DA (GSI-EnKF)
- RAP mean + GDAS (GFS) perturbations
- Conventional observations only (no radar data)

Proof-of-concept Real-time demonstration With NSSL Experimental WoF System for ensembles "NEWS-e"

Assimilation 20 members 1 hr cycling 21 fcsts / day Start 21z day zero End 18z day one

Forecast

- 00z Three mem to 30 hr
- 03z Three mem to 27 hr
- 12z Six mem to 18 hr
- 15z Eighteen mem to 15 hr
- 18z Eighteen mem to 12 hr

HRRRE and NEWS-e Workflows

17th WRF Workshop •

HRRRE and **NEWSe**

17th WRF Workshop •

HRRRE

HRRRE: Case Study 09 May 2016

28 Jun 2016 • 22

17th WRF Workshop •

HRRRE

HRRRE: Case Study 09 May 2016

1-hr Maximum Updraft Helicity Valid 22z (colors > 25 m²/s²)

HRRRX 15z-17z initializations Time-Lagged Ensemble

05/09/2016 15Z 8	ir icsi	0.5/0	9/2016	16Z 7h	r ICSI	(05/0)	/2016	17Z 6h	r icsi
25 100 200	300	25	100	200	300	25	100	200	300

HRRRE 15z + 7hr fcst valid 22z

Effective use of the boundary observations in storm-scale ensemble data assimilation

05 06 07

01 02 03

17th WRF Workshop •

Reflectivity [dBZ]

HRRRE

28 Jun 2016 • 23

08 09

HRRRE to NEWSe: Case Study 09 May 2016

T+90 min from 18z HRRRE initial conditions

NEWSe initialized 1930z on 9 May 2016 90 Minute Forecast

Probability Matched Mean Composite Reflectivity (orange) MRMS Composite Reflectivity Obs (grey)

- Forecasts central OK storm prior to storm initiation
- Indicates scatted nature of storms moving across OK/AR
- Misses KS storms near the edge of the domain

28 Jun 2016 •

NEWSe

HRRRE to NEWSe: Case Study 09 May 2016

T+180 min from 18z HRRRE initial conditions

NEWSe initialized 2100z on 9 May 2016 90 Minute Forecast

Probability Matched Mean Composite Reflectivity (green) 90th Percentile Value of 0-2km Vertical Vorticity (colors)

- Vertical Vorticity forecast aligns with observed tornadoes in south central OK
- Overforecast in KS
- Underforecast in OK

17th WRF Workshop •

NEWSe

HRRRE Observation Space Diagnostics: 1-hr cycling

- Black = Observation Error
- Red = Ens Bias (mean obs innovation)
- **Green** = Total Spread (ensemble standard deviation + ob error)
- Blue = Ens Forecast Error (innovation standard deviation)

Need accurate specification of observation error Ensemble spread << Observation error \rightarrow Not drawn towards obs in DA Based on results observation errors reduced for some datasets

Want total spread to track with forecast errors of the day Ensemble spread < Forecast error (green < blue) \rightarrow Underdispersive Ensemble spread > Forecast error (green > blue) \rightarrow Overdispersive **Ensemble generally underdispersive**

Ensemble design refinements planned including... statistical post-processing

17th WRF Workshop •

HRRRE

HRRR Time-Lagged Ensemble (HRRR-TLE)

Current Experimental Probability Products:

- Based on 3 HRRRX runs (equal weight)
- Starting with forecast hour two
- 40-km neighborhood probabilities
- 120-km spatial filter applied after identifying neighborhood hazard exceedance

Real-Time Web Graphics (and grids via LDM/FTP) http://rapidrefresh.noaa.gov/hrrrtle

HRRR Time-Lagged Ensemble - Experimental Model: HRRRX Neighborhood Probability (Experimental) Area: Full Date: 07 Jun 2016 - 22Z

Aodel: HRRRX Neighborhood Probability (Experimental) 😳 Domain: Full 😋 Date: 07 Jun 2016 - 222

17th WRF Workshop •

HRRR-TLE Development: Bias Correction

Frequency Bias Correction Using "Quantile Mapping"

Model forecast climatology adjusted to observation climatology for a particular threshold (1 inch / 6 hrs)

Exploring modified gamma distribution for additional refinement in bias correction

HRRR-TLE Precipitation Products

Results: Probability of 0.5" Precipitation in 6 hours May-Aug 2015

With relatively small sample size (~50 forecasts)

Produce statistically reliable probabilities 60% forecasts observed 60% of the time

Produce probabilities with sufficient resolution/sharpness Large dynamic range to probabilities including extremes

Still fundamentally underdispersive (overconfident)

HRRRE-TLE

HRRR-TLE Case Study: 12 UTC 18 April 2016

HRRR-TLE forecasts > 60% probability of 6hr QPF exceeding 100 year average return interval (ARI) in Houston,TX area based on ATLAS14

17th WRF Workshop •

HRRRE-TLE

HRRR-TLE Case Study: 12 UTC 23 June 2016

6 hr QPE Valid 18z 23 June 2016

24 hr QPE Valid 06z 24 June 2016

HRRR-TLE forecasts > 40% probability of 6hr QPF exceeding 100 year average return interval (ARI) in West Virginia area based on ATLAS14

HRRR-TLE 15 hr fcst valid 15z 23 June 2015

6 hr PQPF > 3"

17th WRF Workshop

HRRR-TLE: Product Development

Product Development Methodology

Hazard	<u>Proxy</u>	<u>Truth</u>
Heavy rainfall	QPF	Stage-IV / MRMS
Snowfall rate	Microphysics-based	ASOS visibility
Precipitation type	Microphysics-based	ASOS type
Accumulating snow	Explicit snow depth	Point observations
Severe wind	80-m hourly max wind or 10-m gust	METAR/mesonet observations
Large hail	Column graupel, updraft speed, ?	MESH
Tornado Threat*	Updraft helicity	Post-processed MRMS rotation tracks
Lightning	Lightning flash algorithm	GLD360/NLDN
Visibility/Ceiling	Post-processed field in development	ASOS or future CIMSS technique
General Convection	Vertical motion, stability, reflectivity	MRMS reflectivity

17th WRF Workshop •

HRRRE-TLE

HRRR-TLE: Project Timeline

Product Development Timeline

Engage National Center Testbeds

	Organization/Experiment	Hazards	Platform	Timeline
nt	WPC WWE	PQPF, Snowfall, Snow Rate	NAWIPS and web site	January 2016
	NSSL/SPC EFP/EWP	Tornadoes, Hail, Wind	NAWIPS and AWIPSII	May 2016
	WPC FFalR	Refined PQPF and FF guidance	NAWIPS	June 2016
	AWC Summer Experiment	Initial aviation hazards: ceiling, visibility, convection	NAWIPS	August 2016
	WPC WWE	Refined winter hazards and PQPF	NAWIPS	January 2017
	AWC Winter Experiment	Ceiling and visibility	NAWIPS	February 2017
	NSSL/SPC EFP/EWP	Refined severe weather guidance	NAWIPS and AWPSII	May 2017
	WPC FFalR	Refined FF guidance	NAWIPS	July 2017
	AWC Summer Experiment/ OPG	Refined aviation hazards	NAWIPS and AWPSII	August 2017
	Initiate NCO 'on-boarding"	All	IDP	Late 2017 or 2018

17th WRF Workshop •

HRRRE-TLE

Objective HRRRE verification underway

- Membership comparison against deterministic forecasts (HRRRX)
- Ensemble diagnostics like spread/skill

Refine ensemble data assimilation

- Install radar reflectivity data assimilation
- Stochastic physics (parameter perturbation, tendencies)
- Apply HRRR-TLE statistical post-processing
- Include lagged members?

Real-Time Status

Resume real-time HRRRE runs in Oct/Nov 2016 after ending 20 June 2016 HRRR-TLE runs continually available

RAPv4/HRRRv3 ESRL Development 39/36 hr Runs

	Model	Data Assimilation
RAPv4 (13 km)	WRF-ARW v3.8+ incl. physics changes Physics changes: Thompson microphysics – improved upper-level clouds MYNN PBL update – better sub-grid clouds, meso env LSM update – 15" MODIS data – better lower boundary Thomp. aerosols + MYNN cloud-fraction – improved C&V VIIRS-based real-time greenness vegetation fraction Numerics changes: Improved terrain (cell avg) – reduced noise, better turb Hybrid vertical coordinate from NCAR (upcoming)	Merge with GSI trunk – last updated in Jan 2016 <u>New Observations for assimilation:</u> NCEP new VAD wind retrievals Add AMVs over land and TAMDAR GOES-R lightning mapper – convection proxy <u>Assimilation Methods:</u> Revised PBL pseudo-obs – reduce RH bias More ensemble weight in hybrid DA (.9/.1) METAR and GOES cloud building now consistent Aircraft temperature bias correction
HRRRv3 (3 km)	WRF-ARW v3.8+ incl. physics changes <u>Physics changes:</u> Thompson microphysics – improved upper-level clouds MYNN PBL update – better sub-grid clouds, meso env LSM update – 15" MODIS data – better lower boundary Thomp. aerosols + MYNN cloud-fraction – improved C&V VIIRS-based real-time greenness vegetation fraction <u>Numerics changes:</u> Hybrid vertical coordinate from NCAR (upcoming)	New Observations for assimilation: GOES cloud-top cooling rates – convection proxy Add new VAD wind, AMVs over land and TAMDAR GOES-R lightning mapper – convection proxy Radar radial velocity at 3km – better convection DA Methods: More ens weight in hybrid DA (.9/.1) – better winds Full atmospheric cycling – better 0-4 hr convection Variational/hybrid cloud analysis – better C/V

17th WRF Workshop • RAPv4/HRRRv3

6.6 Wed 11:45 Joseph Olson Updates to the MYNN PBL and surface layer scheme for RAP/HRRR

7A.2 Thu 8:45 Ravan Ahmadov Development of the HRRR-Smoke air quality modeling system with the VIIRS real- time fire products

7B.3 Thu 9:00 Jaymes Kenyon Case Studies of improved HRRR low-level wind forecasts from the Wind Forecast Improvement Project II

9.2 Thu 1:45 Isidora Jankov A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble