The Response of Tropical Cyclone Characteristics to Projected Climate Change through WRF simulations and Pseudo Global Warming Technique

Chelsea Parker¹, Amanda Lynch¹, and Cindy Bruyère² ¹Brown University: Department of Earth, Environmental, and Planetary Sciences, Providence, Rhode Island ²National Center for Atmospheric Research, Boulder, Colorado

17th Annual WRF Users' Workshop Regional Climate Wednesday 29th June 2016

Study Area and Motivation: The Great Barrier Reef

The world's largest coral reef ecosystem.

Area of 350,000 km², extending >2,300 km along Australia's northeast coast.

Ecosystem services generate \$5.7 billion AUD and 69,000 full time equivalent jobs annually

Experimental Design: WRF

- WRF v 3.4.1
- 2 Domains
- Horizontal Grid Spacing: 36/12km
- Vertical Levels: 36 levels
- Simulation length: 3-5 days
- ERA-I data for boundary conditions
- 4km Initial Conditions provided by Australian Bureau of Meteorology ACCESS-TC

Initialization Data: courtesy of Noel Davidson, Bureau of Meteorology, Australia

Experimental Design: WRF

- Sfclay: Monin Obukhov Scheme
- Surface: Unified Noah LSM
- MP: Ferrier Scheme
- PBL: YSU Scheme
- SW/LW Radiation: RRTMG 30°S
- SST Update: OFF
- CU: Kain Fritsch and Tiedtke
- Digital Filter Initialization

Initialization Data: courtesy of Noel Davidson, Bureau of Meteorology, Australia

Experimental Design: Case Studies

- Yasi, January 2011:
 - Lowest Pressure: 929hPa
 - Maximum wind speed: 135knots
 - Landfall: 3rd February
- Marcia, February 2015:
 - Maximum intensity: 930hPa
 - Maximum wind speed: 116knots
 - Landfall: 20th February
- Ita, April 2014:
 - Maximum intensity: 930hPa
 - Maximum wind speed: 140knots
 - Landfall: 12th April

Methodology: Pseudo Global Warming Technique

Climate Scenario	Boundary Conditions	CO ₂ Concentration (ppm)
Current	ERA-Interim	379
Future	ERA-Interim + Δ CC	935

- 1. Climate Change Delta (Δ CC) = CESM 2071-2100 CESM 1976-2005
- 2. CESM 2071-2100 = monthly average RCP 8.5 scenario
- 3. CESM 1976-2005 = monthly average 20^{th} Century simulations

CESM Data: Monaghan et al. 2014

Methodology: Pseudo Global Warming Technique

Δ CC to 3D Fields	Δ CC to 2D Fields
Temperature	Sea Surface Temperature
Relative Humidity	Skin Temperature
U, V Winds	Soil Moisture
Pressure	Soil Temperature
Geopotential Height	Surface Pressure
	Sea Level Pressure

Climate Change Delta: SST

Longitude

Climate Change Delta: Environmental Profile

CAPE: Current: **792J**, Future: **1164J** CIN: smaller Warmer and more moist

Results

Response of case studies to ΔCC

Results: Yasi Trajectories

Results: Yasi SLP, Wind Speed

Current → Future

- Up to **17%** increase in max wind speed
- Decrease in central pressure to **10hPa**

Results: Model Internal Variability

Results: Ita SLP, Wind Speed

- Up to 14% increase in max wind speed before landfall
- Decrease in central pressure to **12hPa**
- Average 25%
 increase in
 translation speed

Results: Marcia SLP, Wind Speed, Size

- Decrease in central pressure to 10hPa.
- Average **40%** increase in size.
- Up to 20% increase in max wind speed before landfall and 30% increase after landfall.

Results: Marcia Precipitation

- On average **32%** increase in average precipitation.
- On average **46%** increase in maximum precipitation.

Conclusions

- Future climate results in:
 - Central pressure decreases ~ 10 hPa.
 - Wind speed increases $\sim 15\%$, up to 30%.
 - Precipitation average increases 15-30%, maximum increases 15-45% along the track and coastline.

Conclusions

- Future climate results in:
 - Central pressure decreases ~ 10 hPa.
 - Wind speed increases $\sim 15\%$, up to 30%.
 - Precipitation average increases 15-30%, maximum increases 15-45% along the track and coastline.
 - The smallest, weakest storm Marcia increases in size by average 40%.
 - Ita demonstrates an average increase in translation speed of 25%.

Conclusions

- Future climate results in:
 - Central pressure decreases ~ 10 hPa.
 - Wind speed increases \sim 15%, up to 30%.
 - Precipitation average increases 15-30%, maximum increases 15-45% along the track and coastline.
 - The smallest, weakest storm Marcia increases in size by average 40%.
 - Ita demonstrates an average increase in translation speed of 25%.
- Cumulus schemes produce same overall change in TC characteristics with future climate, but magnitude of change can be sensitive to the scheme.

Ita: ERA-I v ERA-I BOM Initialization

2. Results: Cumulus Sensitivity

TC Marcia 2015, track and intensity sensitivity to Kain Fritsch vs Tiedtke CU scheme

2. Results: Cumulus Sensitivity

TC Yasi 2011, track and intensity sensitivity to Kain Fritsch vs Tiedtke CU scheme

2. Results: Cumulus Sensitivity

TC Yasi 2011, track and intensity sensitivity to Kain Fritsch vs Tiedtke CU scheme

3. Results: Future Projection Sensitivity to Cumulus

TC Yasi 2011, future track and intensity sensitivity to Kain Fritsch vs Tiedtke CU scheme

Current → Future

- Similar overall trends.
- Tiedtke scheme: further poleward shift in trajectory.

3. Results: Future Projection Sensitivity to Cumulus

TC Yasi 2011, future track and intensity sensitivity to Kain Fritsch vs Tiedtke CU scheme

.

			_ Wind Speed and SLP Yasi_CU1_v_CU6_ClimateChange
Change in Characteristic	Kain Fritsch	Tiedtke	
Max SLP (hPa)	-8.14	-6.73	
Max % change wind speed	4.24	1.76	960 960 960 960 960
Mean % change avg precip	14.33	24.71	40 - 940 - 940
Mean % change max precip	16.07	15.32	20 20 20 20 20 20 20 20 20 20 20 20 20 2
			0 20 40 60 80 100
			Simulation Hours

Yasi: Precipitation

- Up to **25%** increase in average precipitation.
- Up to **61%** increase in maximum precipitation.

Yasi: Wind and Precipitation Swath

Yasi: Wind and Precipitation Swath

SEA SURFACE TEMPERATURE (K)

Init: 2011-01-31_00:00:00

Init: 2011-01-31_00:00:00

Yasi: SSTs

Latitude

Climate Change SST Delta Jan

Init: 2011-01-31_00:00:00

WE = 505 ; SN = 283 ; Levels = 35 ; Dis = 12km ; Phys Opt = 5 ; PBL Opt = 1 ; Cu Opt = 1

Yasi: Skew Ts from Eye

CAPE: Current: 2150J, Future: 2936J CIN: smaller Temperature Inversion: smaller Moisture: greater aloft

Marcia: Trajectories

Ita: Trajectories

$\frac{\text{Current} \rightarrow \text{Future}}{\text{Current}}$

• On average **25%** increase in translation speed to landfall

April 500mb delta

April 500mb(kts) Climate Delta

Init: 2014-04-07_12:00:00

Delta 500mb Winds (kts)

Climate Change SST Delta April

April SST Climate Change Delta (K)

Ita: SSTs

SEA SURFACE TEMPERATURE (K)

SEA SURFACE TEMPERATURE (K)

Latitude

			Long	gitude	9			
SEA SURFACE TEMPERATURE (K)								
298.8 299.4	300	300.6	301.2	301.8	302.4	303	303.6 304.2	

Latitude

ITA 2014: SST Sensitivity

ITA 2014: Delta Sensitivity

Ita: Skew Ts from Eye ts 45

CAPE: Greater **CIN:** smaller **Temperature Inversion: smaller** Moisture: greater aloft

