Updates to photolysis calculations in WRF-Chem and evaluation with measurements

Alma Hodzic, Young-Hee Ryu,

Stacy Walters, Sasha Madronich, Andrew Conley

National Center for Atmospheric Research Atmospheric Chemistry Observations and Modeling

WRF workshop, NCAR, June 2016

Photolysis: - chemical dissociation caused by absorption of solar radiation;- an essential component of air quality models

Example :

 $O_3 + hv (\lambda < 340 \text{ nm}) \rightarrow O_2 + O(^1D)$ (J_{O1D}) source of OH in troposphere NO₂ + hv ($\lambda < 420 \text{ nm}$) \rightarrow NO + O(³P) (J_{NO2}) source of O₃ in troposphere

Photolysis rates :

 $J(s^{-1}) = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

 $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹ \propto probability of photon near molecule.

 $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹

 \propto probability that photon is absorbed.

 $\phi(\lambda)$ = quantum yield, molec quanta⁻¹

 \propto probability that absorbed photon causes dissociation.

What do we need to know to predict photolysis reactions?

Compilations of Cross Sections & Quantum Yields MPI-Mainz: <u>http://www.atmosphere.mpg.de/enid/2295</u> NASA JPL: <u>http://jpldataeval.jpl.nasa.gov/</u>

Actinic flux (F) is spherically integrated radiation (≠ irradiances on the surface)

$$F = \int_{0}^{\pi} \int_{0}^{2\pi} I(\theta, \varphi) \sin \theta \, \mathrm{d} \varphi \, \mathrm{d} \theta$$

(Watts m⁻² or quanta s⁻¹ cm⁻²)

Attenuations/enhancements of photolysis by:

Molecules

Rayleigh scattering

Absorbing O₂, O₃, NO₂, SO₂

- Clouds (COD ~ 1-500) scattering
- Aerosols (AOD < 5) absorbing and scattering

Several radiative transfer packages:

- phot_opt = 1 : TUV (140 λ s, delta-Eddington)
- phot_opt = 2 : Fast-J
- phot_opt = 3 : F-TUV
- \Rightarrow phot_opt = 4: updated TUV
- (17 λs, 8-str Feautrier)
 - (17 λ s, correction factor, delta-Eddington)

(140 λs, delta-Eddington – next release)

Limitations of current schemes & improvements :

Cross sections & quantum yields data

- are hard-coded and not up to date

⇒ data are read from an input file wrf_tuv_xsqy.nc

 \Rightarrow data are based on the latest version of the TUV model (V5.2, Jan 2016)

- Limited number of photolysis reactions
 - hard to add new reactions
 - ⇒ 109 photolysis reactions relevant for tropospheric and stratospheric chemistry (e.g. halogens chemistry)

List of available photolysis reactions in the updated TUV

*in mozart_mosaic_4bin

1	02 -> 0 + 0	(J_o2)	
2	O3 -> O2 + O(1D)	(J_01d)	
3	O3 -> O2 + O(3P)	(J_o3p)	
4	HO2 -> OH + O		
5	H2O2 -> 2 OH	(J_h2o2)	
6	NO2 -> NO + O(3P)	(J_no2)	
7	NO3 -> NO + O2		
8	NO3 -> NO2 + O(3P)		
9	N2O -> N2 + O(1D)	(J_n2o)	
10	N2O5 -> NO3 + NO + O(3P)		
11	N2O5 -> NO3 + NO2	(J_n2o5b)	
12	HNO2 -> OH + NO		
13	HNO3 -> OH + NO2	(J_hno3)	
14	HNO4 -> HO2 + NO2	(J_hno4)	
15	NO3-(aq) -> NO2(aq) + O-		
16	NO3-(aq) -> NO2-(aq) + O(3P)		
17	CH2O -> H + HCO	(J_ch2or)	
18	CH2O -> H2 + CO	(J_ch2om)	
19	CH3CHO -> CH3 + HCO	(J_ch3cho_a)	
20	CH3CHO -> CH4 + CO	(J_ch3cho_b)	
21	CH3CHO -> CH3CO + H	(J_ch3cho_c)	
22	C2H5CHO -> C2H5 + HCO		
23	CH3OOH -> CH3O + OH		
24	HOCH2OOH -> HOCH2O. + OH (J_pooh)		
25	CH3ONO2 -> CH3O + NO2		
26	CH3(OONO2) -> CH3(OO) + NO2		
27	CH3CH2ONO2 -> CH3CH2O + NO2		
28	C2H5ONO2 -> C2H5O + NO2		
29	n-C3H7ONO2 -> C3H7O + NO2		
30	1-C4H9ONO2 -> 1-C4H9O + NO2		

31	2-C4H9ONO2 -> 2-C4H9O + NO2		
32	CH3CHONO2CH3 -> CH3CHOCH3 + NO2		
33	CH2(OH)CH2(ONO2) -> CH2(OH)CH2(O.) + NO2		
34	CH3COCH2(ONO2) -> CH3COCH2(O.) + NO2		
35	C(CH3)3(ONO2) -> C(CH3)3(O.) + NO2		
36	C(CH3)3(ONO) -> C(CH3)3(O) + NO		
37	CH3CO(OONO2) -> CH3CO(OO) + NO2	(J_pan_a)	
38	CH3CO(OONO2) -> CH3CO(O) + NO3	(J_pan_b)	
39	CH3CH2CO(OONO2) -> CH3CH2CO(OO) +	NO2	
40	CH3CH2CO(OONO2) -> CH3CH2CO(O) + N	103	
41	CH2=CHCHO -> Products		
42	CH2=C(CH3)CHO -> Products	(J_macr)	
43	CH3COCH=CH2 -> Products	(J_mvk)	
44	HOCH2CHO -> CH2OH + HCO	(J_glyald_a)	
45	HOCH2CHO -> CH3OH + CO	(J_glyald_b)	
46	HOCH2CHO -> CH2CHO + OH	(J_glyald_c)	
47	CH3COCH3 -> CH3CO + CH3	(J_ch3coch3	
48	CH3COCH2CH3 -> CH3CO + CH2CH3	(J_mek)	
49	CH2(OH)COCH3 -> CH3CO + CH2(OH)	(J_hyac_a)	
50	CH2(OH)COCH3 -> CH2(OH)CO + CH3	(J_hyac_b)	
51	CHOCHO -> HCO + HCO	(J_gly_a)	
52	CHOCHO -> H2 + 2CO	(J_gly_b)	
53	CHOCHO -> CH2O + CO	(J_gly_c)	
54	CH3COCHO -> CH3CO + HCO	(J_mgly)	
55	CH3COCOCH3 -> Products		
56	CH3COOH -> CH3 + COOH		
57	CH3CO(OOH) -> Products		
58	CH3COCO(OH) -> Products		
59	(CH3)2NNO -> Products		
50	CF2O -> Products	5	

- 61 Cl2 -> Cl + Cl
- 62 ClO -> Cl + O(1D)
- 63 ClO -> Cl + O(3P)
- 64 ClOO -> Products
- 65 OCIO -> Products
- 66 Cloocl -> Cl + Cloo
- 67 HCl -> H + Cl
- 68 HOCI -> HO + CI
- 69 NOCI -> NO + CI
- 70 CINO2 -> CI + NO2
- 71 ClONO -> Cl + NO2
- 72 CIONO2 -> CI + NO3
- 73 CIONO2 -> CIO + NO2
- 74 CCl4 -> Products
- 75 CH3OCI -> CH3O + Cl
- 76 CHCl3 -> Products
- 77 CH3Cl -> Products
- 78 CH3CCl3 -> Products
- 79 CCl2O -> Products
- 80 CCIFO -> Products
- 81 CCI3F (CFC-11) -> Products
- 82 CCI2F2 (CFC-12) -> Products
- 83 CF2CICFCI2 (CFC-113) -> Products
- 84 CF2CICF2CI (CFC-114) -> Products
- 85 CF3CF2Cl (CFC-115) -> Products
- 86 CHCIF2 (HCFC-22) -> Products
- 87 CF3CHCl2 (HCFC-123) -> Products
- 88 CF3CHFCl (HCFC-124) -> Products
- 89 CH3CFCl2 (HCFC-141b) -> Products
- 90 CH3CF2Cl (HCFC-142b) -> Products

- 91 CF3CF2CHCl2 (HCFC-225ca) -> Products
- 92 CF2CICF2CHFCI (HCFC-225cb) -> Products
- 93 Br2 -> Br + Br
- 94 BrO -> Br + O
- 95 HOBr -> OH + Br
- 96 BrNO -> Br + NO
- 97 BrONO -> Br + NO2
- 98 BrONO -> BrO + NO
- 99 BrNO2 -> Br + NO2
- 100 BrONO2 -> BrO + NO2
- 101 BrONO2 -> Br + NO3
- 102 BrCl -> Br + Cl
- 103 CH3Br -> Products
- 104 CHBr3 -> Products
- 105 CF2Br2 (Halon-1202) -> Products
- 106 CF2BrCl (Halon-1211) -> Products
- 107 CF3Br (Halon-1301) -> Products
- 108 CF2BrCF2Br (Halon-2402) -> Products
- 109 perfluoro 1-iodopropane -> products

Additional file in KPP/mechanisms/\$mechanism/ \$mechanism.tuv.jmap

Correspondence j_wrfchem with available j_tuv

- Added routines in chem/
 - module_phot_tuv.F
 - module_subs_tuv.F
- Stratospheric ozone
 - f-TUV: climatology at the model top (input file exo_coldens.nc)
 - fast-J: specified value at the model top for the whole domain
 - TUV: specified value with extra levels above the model top

 \Rightarrow Updated TUV: uses ozone climatology distributed from model top to 50km (extra levels above the model top, standard atmosphere)

 Aerosols: calculated in the optics driver Mixing rules for index of refraction; Different core-shell options

Comparison of diurnal profiles in clear sky conditions (Boulder)

Photolysis calculations in WRF-Chem

- Current treatment of clouds
 - Cloud optical properties are recalculated in photolysis scheme
 - Differ between schemes and from physics (e.g. RRTMG)
 - Sub-grid cloud overlap schemes
 e.g. f-TUV (max overlap if vertically contiguous, random otherwise)
- <u>Updated method 1 (phot_opt=4)</u>
 - COD calculated from LWP/IWP and effective drop radius (Slingo 1989, similar to CAM radiation with SSA = 0.9999 and f_{assym} = 0.85)
 - Sub-grid cloud effects are represented as in Briegleb (1992)
 (COD_{subgrid} = COD * FCLD^{3/2}, equivalent to random overlap)
- <u>Updated method 2 (phot_opt=4)</u> uses RRTMG cloud vertical distribution
 - RRTMG adopts maximum-random overlap to distribute LWP/IWP randomly over wavelength bins based on cloud fraction.
 - Take COD that is averaged over the RRTMG wavelength bins.

- WRF-Chem simulations : CONUS (12x12km²) during summer 2013
- MOZART-MOSAIC chemistry
- Morrison microphysics + CU Grell

Effective cloud optical depths – 14 Aug. 2013 (18UTC)

Comparison for all SEAC4RS flights

Ratio of WRF / OBS Actinic Flux for all SEAC4RS flights

Comparison of PAR (Photosynthetically active radiation)

- Observed PAR (USDA UV-B Monitoring Network over the US)
- WRF: used in MEGAN PAR = 4.766 * 0.5 * SWDOWN
- WRF: calculated from new TUV RRTMG phot_opt=4

PAR radiation – 14 August 2013

10-20% difference in simulated PAR between values used in the MEGAN model for biogenic VOC emissions, and those predicted by TUV. => Effect on BVOC emissions?

Updated TUV (phot_opt = 4):

- Offers a more flexible framework for updating quantum yields and cross sections and adding new photolysis reactions through KPP
- Provides computationally efficient treatment of the subgrid cloud effects
- Consistency between TUV radiation with RRTMG and MEGAN emissions
- Better agreement with observations in clear sky and cloudy conditions compared to old TUV (photolysis are less attenuated below clouds)
- Updates will be made available in the next major model release

Next Steps

- Evaluate the effect on ozone production caused by changes in both photolysis and PAR values.
- Seek improvements in photochemistry through data assimilation of actinic fluxes or better cloud fields.

