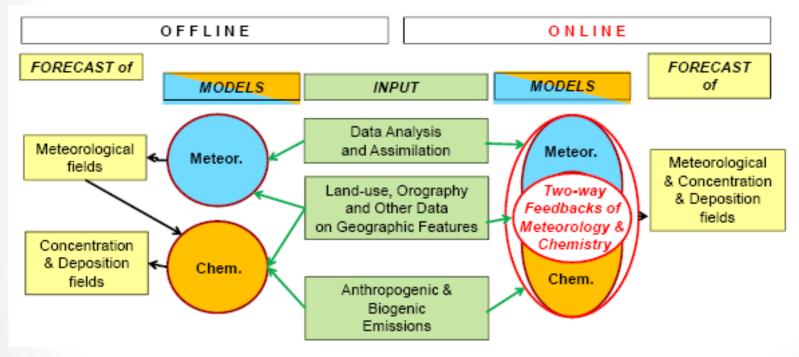
令EPA

Does Temperature Nudging Overwhelm Aerosol Radiative Effects in Regional Integrated Climate Models?

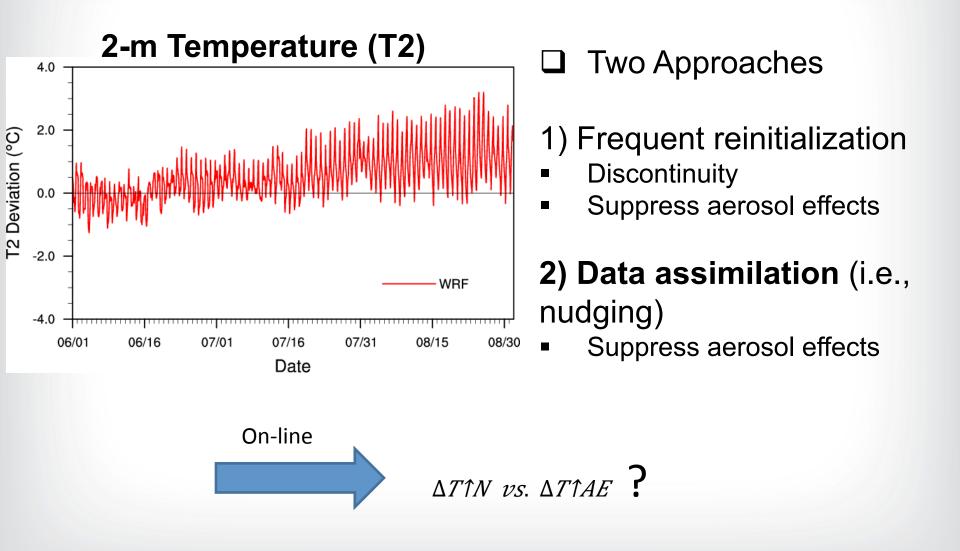
Jian He¹, Tim Glotfelty¹, Khairunnisa Yahya², Kiran Alapaty¹, and Shaocai Yu^{3,4}

¹National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA


> ²Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA

³Research Center for Air Pollution and Health, ⁴Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China

> 17th WRF Workshop June 30, 2016



Meteorology is an important driver for chemical transport models.

Schematic diagram of (left) offline and (right) online coupled meteorology and chemistry modelling approaches for air quality and meteorology simulation and forecasting (Baklanov et al., 2014).

Meteorological Biases

SEPA

€PA

Pseudo Radiative Effects (PRE)

1. Surface Effects

Flux-Adjusting Surface Data Assimilation System (FASDAS, Alapaty et al., 2008) $H\downarrow s\uparrow F = \rho C \downarrow p (\partial T \downarrow a\uparrow F / \partial t) \Delta z \quad H\downarrow l\uparrow F$ $= \rho L (\partial q \downarrow a\uparrow F / \partial t) \Delta z \qquad \Box PF$ $PRE_sfc = \{H\downarrow s\uparrow F - \psi \downarrow q H\downarrow l\uparrow F\} \downarrow sfc$

2. Tropospheric Effects

PRE > 0: Nudging has warming effects (i.e., model underpredicts temperatures)

Four-Dimensional Data Assimilation
(FDDA, Stauffer and Seaman, 1990, 1994) \Box PRE < 0: Nudging has
cooling effects (i.e., model $PRE_atm=1/n \sum pbl^{\uparrow}top #H \downarrow s^{\uparrow}F$

overpredicts temperatures)

3. TOA Effects (Effects 1 + 2) PRE_toa= PRE_sfc+PRE_atm

Model Configurations

- □ Weather *Research and Forecasting (WRF) Model*
- > WRF3.7.1

€ FPA

- > YSU, NOAH, MSKF, RRTMG, Morrison DMS
- Mild analysis nudging of free atmosphere (u-v wind components and temperature : 5.0×10⁻⁵ s⁻¹; moisture: 5.0×10⁻⁶ s⁻¹)
- FASDAS for surface layer (temperature and moisture: 8.3×10⁻⁴ s⁻¹, see Alapaty's talk)
- DX = 12 km grids; 35 layers up to 50hPa
- > 12 km NCEP NAM, central and eastern U.S.
- June, July, and August (JJA) 2006

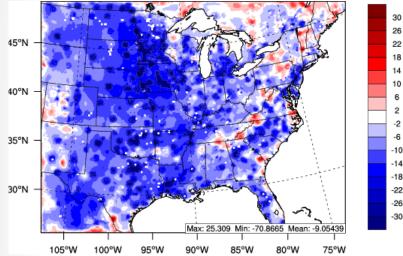
PRE (JJA Averages)

26

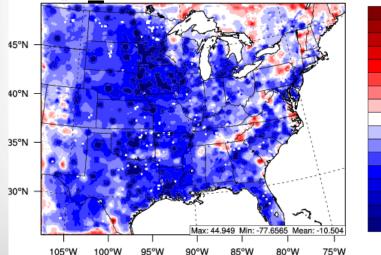
22 18

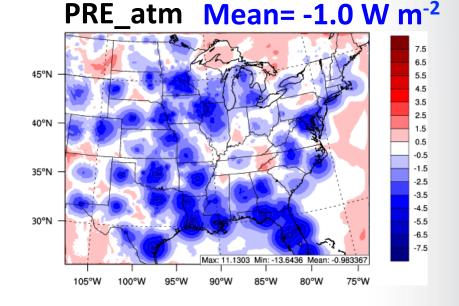
14 10

6


2 -2 -6

-10 -14 -18


-22 -26 -30

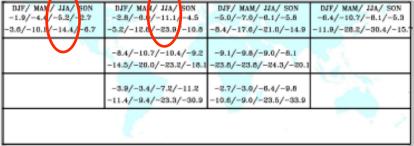

SEPA

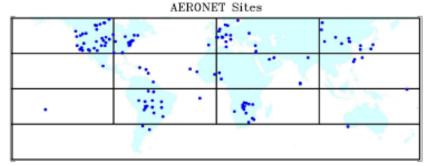
PRE toa Mean= -10.5 W m⁻²

PRE_toa is dominated by PRE_sfc. Nudging is cooling the surface and atmosphere.

⇔EPA

Aerosol Radiative Effects (ARE)

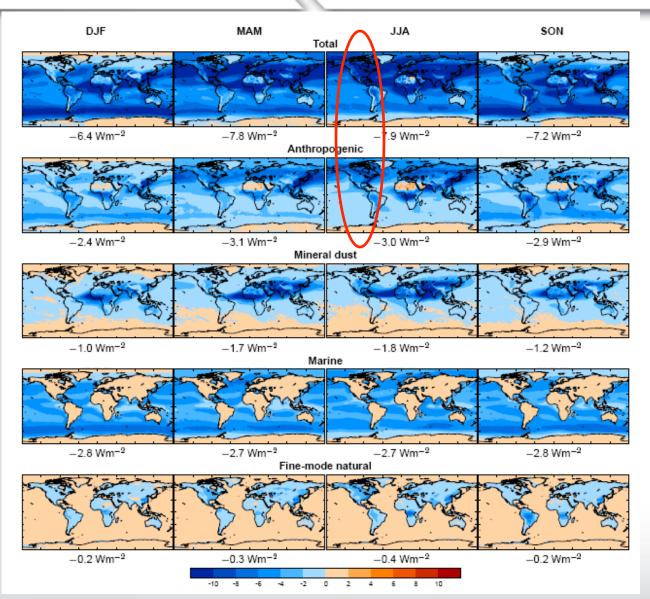

SW Direct Radiative Effects (DRE)


\cap			\frown	MIS	R_G		•		•	
ALL RAM	ANN	MAN	ALL	ANN	MAM	11A	ANN	MAN	11V	ANN
0.18 0.15	0.14	0.22	0.22	0.17	0.25	0.24	0.21	0.31	0.24	\$5.0
-5.7 -5.7	-4.2	-7.0	-6.7	-5.8	-5.8	-5.8	-4-4	-5.4	-6.4	-4.4
0.20 0.19	0.15	0.35	0.43	0.32	0.37	0.45	0.33	0.37	0.32	0.31
-5.7 -7.0	-5.1	-6.9	-9.1	-6.9	-6.4	-7.0	-5.6	-8.0	-9.4	-7.2
-5.7 -7.0	-5.1	-0.8	-9.1	-0.8	-0.4	-7.0	-5.0	-0.0	-9.4	-7.6
		0.13	0.10	0.17	0.14	0.24	0.23	0.11	0.10	0.14
		-3.9	-3.0	-4.3	-4.1	-4.6	-5.1	-3.3	-3.1	-3.8
		0.0	MAM	111	ANN	110	Global			0.0
			0.06	0.07	0.09		Giobai	0.25	0.25	0.23
			-4.1	-3.0	-5.8		-	-5.1	-5.8	-4.9
\frown			\frown	MO_M	1I_G0					
MAM JJA	ANN	MAM	ALL	ANN	MAM	11A	ANN	MAM	11A	ANN
0.17 0.14	0.13	0.20	0.21	0.17	0.24	0.23	0.20	0.29	0.23	0.21
-5.2 -5.0	-3.9	-6.3	-7.4	-5.3	-5.4	-5.8	-4.5	-5.4	-6.4	-4.4
	2.0		\smile							
0.19 0.18	0.15	0.31	0.36	0.29	0.34	0.38	0.30	0.33	0.23	0.25
-5.5 -6.3	-4.7	-6.2	-7.4	-6.1	-5.6	-6.2	-5.1	-7.0	-6.5	-6.0
		0.10	0.11	0.13	0.11	0.23	0.19	0.08	0.08	0.11
		-3.0	-2.9	-3.3	-3.2	-4.5	-4.2	-2.5	-2.5	-2.9
			MAN	JJA	ANN		Global	Avora		
			0.07	0.07	0.09		Grobal	0.21	0.21	0.19
			-3.3	-2.8	=4.B		-	-4.7	-5.3	-4.4
			\frown	GOC	ART					
ALL RAM	ANN	MAN	VLL	ANN	MAM	114	ANN	MAM	117	ANN
0.14 0.11	0.11	0.19	0.19	0.17	0.30	0.25	0.23	0.28	0.23	0.22
-4.3 -4.0	-3.6	-5.8	-5.9	-4.9	-7.0	-6.3	-5.3	-5.1	-5.8	-4.4
0.15	0.11	0.29	0.34	0.28	0.33	0.34	0.28	0.34	0.18	0.25
-3.3 -4.5	-3.2	-5.1	-6.6	-5.5	-4.7		-4.3	-6.6	-5.0	
-9.9 -4.9	-3.6	-5.1	-0.0	-0.0	-9.7	-4.9	-4.0	-0.0	-5.0	-5.6
		0.08	0.15	0.12	0.07	0.26	0.17	0.06	0.06	0.07
		-2.3	-3.1	-2.6	-2.0	-4.2	-3.0	-1.6	-1.7	-1.7
			MAM	JJA	ANN		Global	Avera	re.	
			0.07	0.08	0.08		arouar	0.22	0.22	0.20
			-3.6	-3.1	-4.0			-4.4	-4.8	-4.1
										1111111111

DJF/ MAM/ JJA/ SON 0.05/0.11/0.15/0.08 0.92/0.92/0.90/0.89	DJF/ MAM/ JJA/ SON 0.09/0.14/0.31/0.12 0.83/0.92/0.93/0.89	DJF/ MAM/ JJA/ SON 0.15/0.22/0.22/0.21 0.94/0.92/0.90/0.90	DJF/ MAM/ JJA/ S03 0.20/0.36/0.34/0.20 0.83/0.82/0.90/0.88
	0.28/0.34/0.33/0.28 0.95/0.95/0.34/0.94	0.39/0.38/0.38/0.32 0.82/0.94/0.93/0.93	1.5
	0.14/0.11/0.32/0.47	0.11/0.10/0.27/0.43	

AOT (upper) and SSA (lower)

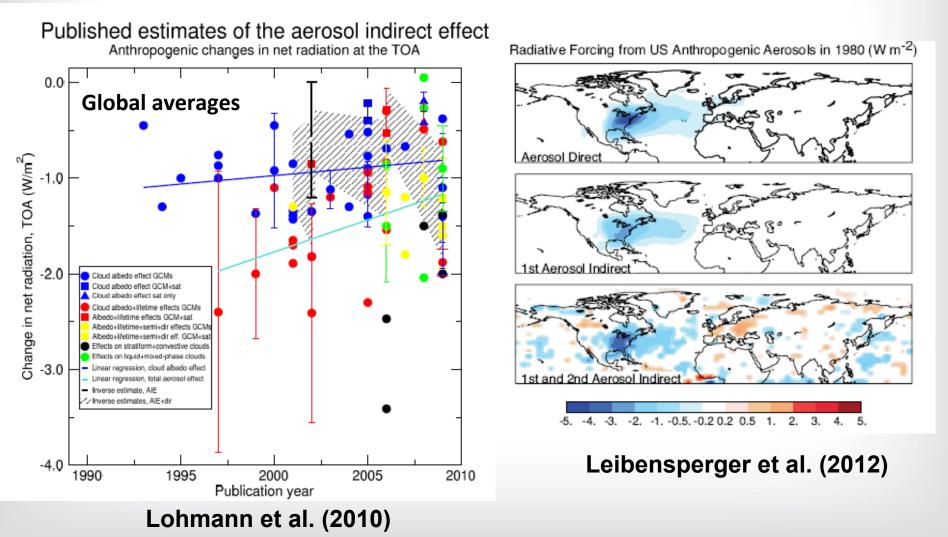
DBE (Wm^{-*}) at the TOL (upper) and surface (lower)



JJA Model TOA: -4.0 to -8.7 W m⁻²; Obs. TOA: -5.2 to -11.1 W m⁻²; Obs. Surface: -14.4 to -23.8 W m⁻² (Yu et al., 2006)

TOA DRE

JJA (SW) CONUS DRE < -10 W m⁻²; Global DRE = -7.9 W m⁻²


Anthropogenic: CONUS: -2 to -8 W m⁻²

(Bellouin et al., 2013)

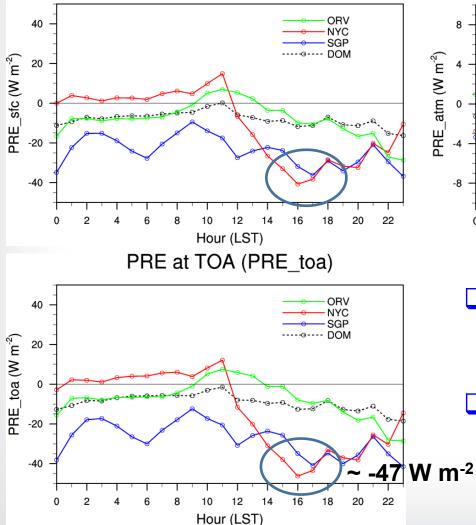
Anthropogenic Aerosol Indirect Effects

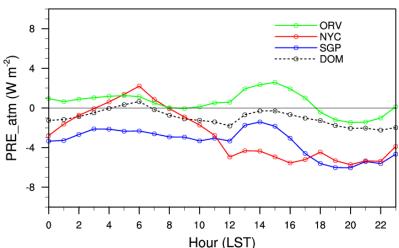
Aerosol Indirect Radiative Effects (large uncertainties)

SEPA

ARE...

Table 1. Reported Aerosol Radiative Effects (W m⁻²)

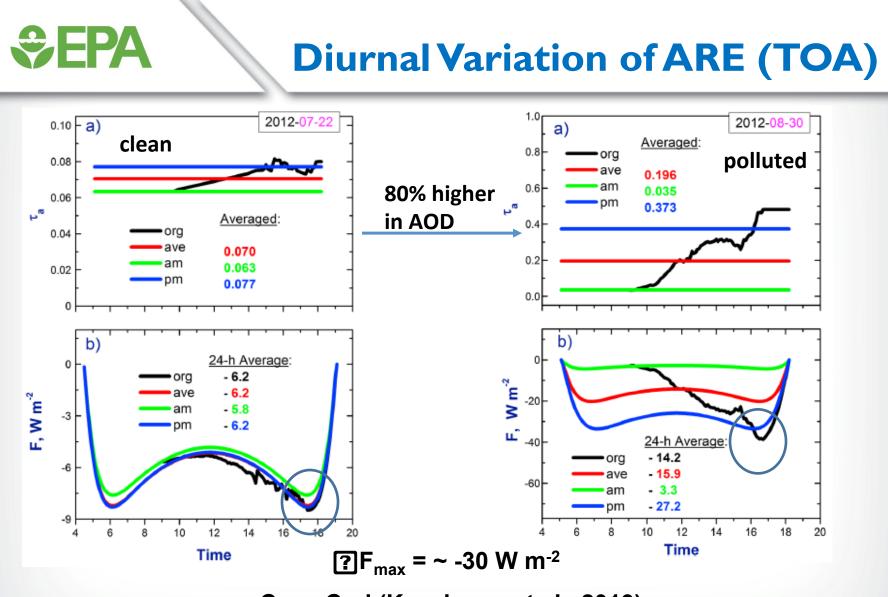

	CONUS	Globe	References
Surface	-14.4 to -23.8 (DRE) -9.1 (PRE)	-11.8±1.9 (DRE, land) -11.5±1.9 (DRE, land)	Yu et al. (2006) Bellouin et al. (2013) This work
Troposphere	-1.0 (PRE)	+5.1 (DRE, land)	Bellouin et al. (2013) This work
ΤΟΑ	< -10 (DRE) -4.0 to -8.7 / -5.2 to -11.1 (DRE) ~ -4 (DRE) ~ -2.0 (anthro. DRE) ~ -2.0 (anthro. IRE) -10.5 (PRE)	-6.4±1.0 (DRE, land) -4.9±0.7 (DRE, land) -0.5 to -5 (IRE, land) -2.3±0.9 (land)	Bellouin et al. (2013) Yu et al. (2006) Heald et al. (2014) Lohmann and Feichter (2005) Leibensperger et al. (2012) Quaas et al. (2009) This work


On regional/continental scales, PRE is close to upper limit of ARE. Using integrated modeling system (e.g., online coupled model) might reduce TOA radiative biases.

Diurnal Variation of PRE

PRE at Surface (PRE_sfc)

SEPA



PRE in Atmosphere (PRE_atm)

- Cooling/warming effects are much higher in local scales than large domain averages.
- Cooling/warming effects can be nonlinear depending on the sizes
 of model errors.

DOM: entire domain; NYC: New York City; ORV: Ohio River Valley, SGP: Southern Great Plains

Cape Cod (Kassianov et al., 2013)

PRE could overwhelm ARE at polluted sites.

Summary

- Surface energy balance errors dominate TOA energy balance.
- Using an integrated modeling system might reduce radiative biases for large domain averages at the top of the atmosphere.
- But, PRE could overwhelm ARE at local scales in an integrated modeling system.

Acknowledgements

- □ The research was funded by US EPA's Air, Climate, and Energy (ACE) Program.
- Russ Bullock and Christian Hogrefe of the US EPA and Jerome Fast of the Pacific Northwest National Laboratory for their valuable comments
- Tanya Spero, Jerry Herwehe, and Chris Nolte of the US EPA for sharing needed data and codes
- Part of this work is supported by the "Zhejiang 1000 Talent Plan" and Research Center for Air Pollution and Health in Zhejiang University and also by the National Natural Science Foundation of China (NSFC) (21577126 and 41561144004) and Department of Science and Technology of China (No. 2014BAC22B06).
- The views expressed and the contents are solely the responsibility of the authors, and do not necessarily represent the official views of the US EPA.