Case Studies of Improved HRRR Low-Level Wind Forecasts from the Wind Forecast Improvement Project II

Jaymes Kenyon, J. Olson, J. Brown, J. Wilczak, I. Djalalova, W. Angevine, R. Banta, M. Stoelinga, J. Sharp, E. Grimit, Q. Yang, L. Berg, K. Wade, M. Brewer, R. Eckman, J. Cline, M. Marquis, and J. McCaa

NOAA / Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences Boulder, Colorado

17th Annual WRF Users' Workshop 30 June 2016 I Boulder, Colorado, USA

Motivation: Improve Wind Forecasts in Complex Terrain

Motivation: Improve Wind Forecasts in Complex Terrain

RAP and HRRR: Hourly-Updated Forecast Models

WFIP2 Meteorology

- Gap Flows
- Convective Outflows
- Mountain Waves
- Topographic Wakes
- Marine Pushes
- Frontal Passages with Stable Mix-Out

WFIP2 Meteorology

- Gap Flows
- Convective Outflows
- Mountain Waves
- Topographic Wakes
- Marine Pushes
- Frontal Passages with Stable Mix-Out
 - 18 December 2015
 - 8 December 2015

1000-500 hPa Thick, PW, SLP, 250 hPa Wnd at 151218/1800

HRRR-WFIP2 750-m Nest Forecast

m s⁻¹

(fill), POTL TEMP (red), PBL TOP (dash) WIND SPEED Init: 2015-12-18_07:00:00 Valid: 2015-12-18 08:00:00 3.0 2.5 2.0 Height (km ASL) 1.5 1.0 0.5 -0.0 2F W Distance (km) Ε

Center Point: Boardman, OR

The MYNN Length Scale: Operational RAP & HRRR

The MYNN Length Scale: Operational RAP & HRRR

The MYNN Length Scale: *Operational RAP & HRRR*

Unstable

Known Problems...

- Harmonic averaging makes length specification difficult
- Surface-layer length scale (z-dependent) is influential everywhere
- Buoyancy enhancement factor may make $L_{\rm B}$ too large in the upper PBL

Mixing Length in 750-m Nest: 6-h Forecast Comparison

Control

w/ New Mixing Lengths

Center Location: Boardman, OR

Valid 1200 UTC 18 December 2015

MYNN Mixing-Length Revision:

Model Results...

18 December 2015 8 December 2015

Mixing-Length Revision: 14-h Forecast Difference

Center Location: Boardman, OR

Valid 2000 UTC 18 December 2015

Mixing-Length Revision: 14-h Forecast Difference

Center Location: Boardman, OR

Valid 2000 UTC 18 December 2015

Parameterized Fluxes

Summary

- Common model failure mode...
 poor representation of stable-air "mix out"
 - Better representation of freeatmosphere & PBL turbulence

• For MYNN applications in 3-km HRRR and 750-m nest, reformulating the mixing-length scale appears to improve wind-forecast accuracy.

(1) invoke component length scales where they are physically applicable(2) modify the buoyancy length scale (generally more restrictive)

HRRR Upper-Air Verification

6-h Forecasts: Nov 2015 to Feb 2016

RAPv3/HRRRv2 Summary of Changes

Implementation RAPv3/HRRRv2

Larger RAP Domain

Newer Model Version More Ensemble Weight Advanced Physics

Seasonal Vegetation Fraction/Leaf Area Index

Model		Run at: Domain		Grid Gr Points Spa		id Vertic cing Leve		cal els	Pressure Top		Boundary Conditions		Initialized	
R/	٩P	GSD, North NCO America		953 x 834	13	km	50		10 mb		GFS		Hourly (cycled)	
HR	RR	GSD, NCO CONUS		1799 x 1059	'99 x 059 3 k		n 50		20 mb		RAP		Hourly (pre- forecast hour cycle)	
Мо	del	Version	Assir	Assimilation		Radar DA		ion W	Nicrophysics		Cumulus Param		PBL	LSM
R/	٩P	WRF-ARV v3.6+	V GSI Ensemt	GSI Hybrid Ensemble to 0.75		13-km DFI		G/ IG	Thompson Aerosol v3.6		GF + Shallow		MYNN v3.6	RUC v3.6
HR	RR	WRF-ARV v3.6+	V GSI Ensemt	GSI Hybrid Ensemble to 0.75		3-km 15-min LH		G/ IG	Thompson Aerosol v3.6		None		MYNN v3.6	RUC v3.6
Мо	del	Horiz/Ver Advectio	t Scala n Advecti	r Upper-Leve on Damping		l 6 th Order Diffusion		SW Radiation Update		Lan	nd Use MP Li		Tend imit	Time- Step
R/	٩P	5 th /5 th	Positive Definit	e- w-Ray e 0.	w-Rayleigh 0.2		Yes 0.12		20 min		MODIS Seasonal 0.		1 K/s	60 s
HR	RR	5 th /5 th	Positive Definit	e- w-Ray e 0.	w-Rayleigh 0.2		Yes 0.25 (flat terr)		15 min with SW-dt S		ODIS asonal	0.0	7 K/s	20 s

