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Motivation	

� Convectively-induced	turbulence	(CIT)	
� Aviation	hazard	that	can	cause	moderate	to	
severe	structural	damage	to	aircraft	

� Model	resolution	dependence	
�  Influences	turbulence	magnitude	
� Coarse	operational	models	cannot	resolve	CIT	
processes	

� High	resolution	models	are	needed	for	CIT	
forecasting	
� Computationally	expensive	and	time	consuming	

� Can	CIT	forecasting	be	improved	without	need	
for	large	time	and	computational	allowances?	
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Methodology	

� Stephan	and	Alexander	(2015)	developed	a	
method	to	model	convectively-generated	
gravity	waves	based	on	precipitation	fields	

� Successfully	verified	against	upper	stratospheric	
waves	

� Can	this	method	be	applied	to	the	troposphere	for	
CIT?	

1.	*Evaluate	CIT	using	Stephan	and	Alexander	(2015)	
method	on	historical	cases	of	CIT	

�  10	July	1997	
� Compared	to	high	resolution	simulations	
(“truth”)	and	“operational-scale”	model	
simulations	

2.	Application	of	technique	in	nowcasting	
environment	

3	*	Today’s	presentation	



Methodology-
Stephan	and	
Alexander	
(2015)	

� Substitution	of	model	microphysics	scheme	with	a	latent	
heating	field	in	a	dry	WRF-Ideal	simulation	

�  10	minutes	radar-derived	precipitation	data	(Storm	Total	Rainfall	
Accumulation	Product)	

�  Radar	data	within	domain	are	interpolated	in	space	and	time	to	
create	mosaic	

�  Heating	algorithm	creates	vertical	heating/cooling	profiles		
�  Relationship	between	precipitation	data	and	known	microphysics	tendencies	
�  Evaluated	every	10	minutes	

�  Algorithm	is	only	implemented	in	grid	cells	where	precipitation	
rate	exceeds	1.0	mm	per	10	minutes	

�  Stephan	and	Alexander	(2014)	found	this	threshold	to	be	a	good	
definition	of	a	convective	pixel	

� WRF-Ideal	run	with	no	cumulus,	microphysics,	radiation,	
surface,	and	planetary	boundary	layer	schemes	
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Methodology:	
Simulations	

Model	
Number	of	
Domains	

Horizontal	
Resolution	

Vertical	
Levels	 Model	Top	

Damping	
Layer	

WRF-Ideal	 1	 2	km	 101	 ~	35	km	 10	km	

WRF	Full	
Physics		

3	 4.5,	1.5	km,	500	m	 100	 ~	31	km	 10	km	

3	 27,	9	,	3	km	 91	 ~31	km	 10	km	
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Area	of	
Interest	

Area	of	
Interest	

Stephan	and	Alexander	Method	

“High	Resolution”	

“Operational-Scale”	



Case	Overview	

� 10	July	1997	
� Well	documented	and	investigated	(Lane	et	al.	
2003;	Lane	and	Sharman	2006;	Lane	and	
Sharman	2008)	

� Commercial	aircraft	experienced	severe	
turbulence	near	Dickinson,	North	Dakota	
� Out	of	cloud	turbulence	
� Aircraft	was	maneuvering	between	scattered	
thunderstorms	and	passed	over	a	maturing	
deep	convective	cloud	
� Cell	had	overshot	into	the	tropopause	near	the	
location	of	the	aircraft	(~	11	km)	
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Turbulence	
Intensity	
Calculation	

� Eddy	dissipation	rate:	Turbulence	metric	popular	with	
aviation	

�  Is	not	dependent	on	aircraft	size,	type,	or	speed	(Poellot	and	
Grainger	1991;	Emanuel	et	al.	2013)	

�  EDR= (TKE↑3/2 /L )↑1/3 		(m2/3	s-1)	
�  TKE:	Turbulent	kinetic	energy	(m2	s-2)	

�  Predicted	subgrid-scale	TKE	by	diagnosing	gradient	Richardson	number	(Janijć	
2002)	

�  L:	Length	scale	(m)		
�  336	m	(Ahmad	and	Proctor	2012)	
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Turbulence	Intensity	 EDR	(m2/3	s-1)	

Light	 0.1-0.3	

Moderate	 0.3-0.5	

Severe	 0.5-0.7	

Extreme	 >	0.7	
(Lane	et	al.	2012)	
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Echo	Top	
Heights	

Vertical	
Velocity	
A-A`	

EDR	
A-A`	

EDR	–	11	km	

A`	

A	

Results:	High	Resolution	

� Moderate	turbulence	
near	12.1	km	

�  In	cloud		

�  Limited	light	
turbulence	near	
convection	

�  Aircraft	would	have	
experienced	moderate	
turbulence	if	flying	near	
11	km	

�  Avoid	turbulence	by	
increasing	flight	level	
to	above	13	km	

�  Lateral	avoidance	of	
25	nm	would	suffice	

Moderate	
turbulence	

Moderate	
turbulence	

WRF-Full	Physics	(500	m)	21:40	UTC	
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Echo	Top	
Heights	

Vertical	
Velocity	
A-A`	

EDR	
A-A`	

EDR	–	11	km	

Moderate	
turbulence	

Light	
turbulence	

A`	

A	

Results:	Operational-Scale	Hindcast	

� Moderate	turbulence	
near	9	and	12.5	km	

�  In	cloud		

�  Limited	light	
turbulence	near	
convection	

�  Aircraft	would	have	
experienced	turbulence	
if	flying	near	11	km	

�  Avoid	turbulence	by	
increasing	flight	level	
to	above	13	km	

�  Lateral	avoidance	of	
25	nm	would	suffice	

WRF-Full	Physics	(3km)	21:40	UTC	

*Echo	top	heights	are	shown	at	22	UTC	



Results:	Stephan	and	Alexander	Method	
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B

B`	
Light	
turbulence	

Light	
turbulence	

Light	
turbulence	

•  Light	turbulence	up	
to	11.7	km	

•  In	cloud	
•  Limited	
turbulence	above	
convection	

•  Limited	areal	
coverage	

•  Aircraft	flying	at	11	
km	would	have	
experienced	light	
turbulence	

•  Avoid	turbulence	
by	increasing	
flight	level	or	
circumnavigating	
area		

WRF-Ideal	21:40	UTC	



Discussion:	
Stephan	and	
Alexander	
Method	

� Turbulence	intensity	identified	is	
weaker	than	observations	showed	

� Actual	event	took	place	where	only	
one	radar	covers	area	

�  Radar	gaps	
�  Influence	on	the	simulation	

�  Increase	in	observations→	more	
information	to	generate	latent	
heating	profiles	

�  Resolution	of	radar	data	
�  Accuracy	of	radar-derived	
precipitation	amounts	

�  Investigation	of	other	historical	CIT	
cases	where	more	radars	are	in	use	

� Simplified	heating	profiles	
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Conclusions	

� High	resolution	and	operational-scale	simulations	
produced	moderate	intensity	turbulence	

�  “Operational-scale”	simulation	uses	91	vertical	levels	
and	physics	settings	shown	to	improve	turbulence	
forecasting	

�  Results	if	“operational-scale”	simulation	uses	more	
common	model	physics	and	set	up	(Future	work)	

� Stephan	and	Alexander	(2015)	method	only	produced	
light	turbulence	at	time	of	aircraft	incident	

� Radar	coverage	limitations	
� Simplified	heating	profiles	
� More	cases	needed	to	validate	new	technique	against	
more	traditional	approaches	of	forecasting	CIT	

� Method	has	been	successful	in	gravity	wave	
identification	in	the	upper	troposphere	and	
stratosphere	in	previous	studies	
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Extra	Slides	

�  RRTM,	Dudhia,	Kain	Fritsch,	Noah	Land	Surface	model,	MYJ,	
WDM6,	ETA	similarity	

�  Claudia’s	2014	paper	did	not	find	much	difference	when	using	
different	microphysics	schemes	to	make	heating	algoritm	

�  Did	not	critically	affect	gravity	wave	momentum	flux	spectra	
�  Chose	Morrison	

�  Claudia	uses	MERRA	data	to	initialize	her	run	

�  A	half	sine	profile,	which	is	considered	representative	for	
convective	rainfall	[Shige	et	al.,	2004],	was	chosen	for	the	shape	of	
the	vertical	heating	distribution.	The	amplitude	of	the	profiles	was	
determined	by	the	column-integrated	heating	which	in	turn	was	
calculated	from	the	observed	precipitation	

�  Our	heating	algorithm	is	based	on	the	heating	profiles	generated	
by	a	full-physics	WRF	model	and	therefore	inherently	includes	
advection,	ice-phase	processes,	or	evaporation	
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Results:	WRF-Ideal	Radar-Derived	Latent	Heat	23:20	UTC	

� Moderate	turbulence	
above	12	km	

�  In	cloud	(12-13	km)	

�  Light	turbulence	up	to	
15	km	above	
convection	

�  Out	of	cloud	

�  Severe	turbulence	at	13	
km	

�  Out	of	cloud	
�  West	of	cell	

�  Aircraft	would	have	
experienced	turbulence	
if	attempted	to	fly	over	
cell	

�  Lateral	avoidance	
more	than	25	nm	
would	be	needed	

kkkkkk	K s-1 

Maximum	Column	Heating	 EDR	A-A`	

EDR	B-B`	 EDR-	13	km	

A A`	

B

B`	 Moderate	
turbulence	

Moderate	
turbulence	

Severe	out	of	cloud	turbulence	
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