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* Convectively-induced turbulence (CIT)

* Aviation hazard that can cause moderate to
severe structural damage to aircraft

- Model resolution dependence
- Influences turbulence magnitude

- Coarse operational models cannot resolve CIT
processes

* High resolution models are needed for CIT
forecasting

- Computationally expensive and time consuming

* Can CIT forecasting be improved without need
for large time and computational allowances?




* Stephan and Alexander (2015) developed a
method to model convectively-generated
gravity waves based on precipitation fields

* Successfully verified against upper stratospheric
waves

» Can this method be applied to the troposphere for
CIT?

1. *Evaluate CIT using Stephan and Alexander (2015)
method on historical cases of CIT

10 July 1997
* Compared to high resolution simulations

(“truth”) and “operational-scale” model
simulations

2. Application of technique in nowcasting
environment

* Today's presentation



- Substitution of model microphysics scheme with a latent
heating field in a dry WRF-Ideal simulation

* 10 minutes radar-derived precipitation data (Storm Total Rainfall
Accumulation Product)

* Radar data within domain are interpolated in space and time to
create mosaic

* Heating algorithm creates vertical heating/cooling profiles

* Relationship between precipitation data and known microphysics tendencies
- Evaluated every 10 minutes

* Algorithm is only implemented in grid cells where precipitation
rate exceeds 1.0 mm per 10 minutes

- Stephan and Alexander (2014) found this threshold to be a good
definition of a convective pixel

* WRF-Ildeal run with no cumulus, microphysics, radiation,
surface, and planetary boundary layer schemes
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*10 July 1997
* Well documented and investigated (Lane et al.

2003; Lane and Sharman 2006; Lane and
Sharman 2008)

- Commercial aircraft experienced severe
turbulence near Dickinson, North Dakota

* Qut of cloud turbulence

- Aircraft was maneuvering between scattered
thunderstorms and passed over a maturing
deep convective cloud

* Cell had overshot into the tropopause near the
location of the aircraft (~ 11 km)




- Eddy dissipation rate: Turbulence metric popular with
aviation

* Is not dependent on aircraft size, type, or speed (Poellot and
Grainger 1991; Emanuel et al. 2013)

- EDR=(TKE3/2 /L )T1/3 (m?3s7)
* TKE: Turbulent kinetic energy (m2 s-2)

* Predicted subgrid-scale TKE by diagnosing gradient Richardson number (Janij¢
2002)

* L: Length scale (m)
* 336 m (Ahmad and Proctor 2012)

Turbulence Intensity EDR (m?3s°2)

Light 0.1-0.3

Moderate 0.3-0.5

Severe 0.5-0.7
Extreme > 0.7

(Lane et al. 2012)



Results: High Resolution
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Results: Operational-Scale Hindcast
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Results: Stephan and Alexander Method
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* Turbulence intensity identified is
weaker than observations showed

* Actual event took place where only
one radar covers area
* Radar gaps
* Influence on the simulation

* Increase in observations— more
information to generate latent
heating profiles

- Resolution of radar data

* Accuracy of radar-derived
precipitation amounts

* Investigation of other historical CIT
cases where more radars are in use

- Simplified heating profiles
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* High resolution and operational-scale simulations
produced moderate intensity turbulence
* “"Operational-scale” simulation uses g1 vertical levels

and physics settings shown to improve turbulence
forecasting

* Results if "operational-scale” simulation uses more
common model physics and set up (Future work)

- Stephan and Alexander (2015) method only produced
light turbulence at time of aircraft incident
- Radar coverage limitations
- Simplified heating profiles

* More cases needed to validate new technique against
more traditional approaches of forecasting CIT

* Method has been successful in gravity wave
identification in the upper troposphere and
stratosphere in previous studies
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- RRTM, Dudhia, Kain Fritsch, Noah Land Surface model, MYJ,
WDMS6, ETA similarity

- Claudia’s 2014 paper did not find much difference when using
different microphysics schemes to make heating algoritm
- Did not critically affect gravity wave momentum flux spectra

* Chose Morrison

- Claudia uses MERRA data to initialize her run

- A half sine profile, which is considered representative for
convective rainfall [Shige et al., 200+], was chosen for the shape of
the vertical heating distribution. The amplitude of the profiles was
determined by the column-integrated heating which in turn was
calculated from the observed precipitation

* Our heating algorithm is based on the heating profiles generated
by a full-physics WRF model and therefore inherently includes
advection, ice-phase processes, or evaporation
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a) Simulated latent heating profiles
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b) Algorithm latent heating profiles
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Results: WRF-ldeal Radar-Derived Latent Heat 23:20 UTC
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