WRF model evaluation over Hindu-Kush Himalaya region

Bhupesh Adhikary

International Centre for Integrated Mountain Development

Kathmandu, Nepal

Shreta Ghimire¹, Siva Praveen Puppala¹, Arnico K. Panday¹, Paolo Cristofanelli², Paolo Bonasoni²

¹International Center for Integrated Mountain Development, Kathmandu, Nepal ²Institute for Atmospheric Sciences and Climate, National Research Council of Italy 17th WRF Users Workshop Boulder, Colorado June 27-July1

FOR MOUNTAINS AND PEOPLE

ICIMOD International Centre for Integrated Mountain Development

<u>Mission</u>:

To enable sustainable and resilient mountain development for improved and equitable livelihoods through knowledge and

regional cooperation

Intergovernmental organization

ICIMOD

<u>8 member</u> <u>countries:</u> Afghanistan Bangladesh Bhutan China India Myanmar Nepal Pakistan

Air pollution in our region has far-reaching consequences:

1. Melting of the cryosphere (partly by black carbon)

2. Changing monsoon patterns => agriculture impacts

3. Increasing urban air pollution => health impacts

4. Regional haze over the Indo-Gangetic Plains

ICIMOD

5. Reduced visibility has economic impact on tourism

6. Increased persistent winter fog affects lives of several hundred million including most of Nepal's Tarai residents.

View from Hattiban Resort, Nepal, on 28 February 2013 (L) and 2 March 2013

WRF modeling framework

Google

Nodel Input:	FNL data
VRF model version	3.5.1
lorizontal grid spacing	25 and 5 km
Model top pressure hPa)	50
/ertical levels	40
Aicrophysics	WSM 3-class simple ice scheme
Cumulus	Kain-Fritsch scheme
Planetary boundary ayer	YSU scheme
Surface layer	MM5 Monin-Obukhov

Land surface

Unified Noah land-surface

TALLEBOR TAL

KTM ~1380m

Upper Air Analysis: Temperature @25x25 km @ 0Z

Observation - Patiala - April - Temp

Temperature (C)

Model

Station	Patiala	Dhaka	Lhasa
T Bias	0.521	-0.109	0.308
T RMSE	1.092	0.912	0.603
T Correlation Coefficient	1.000	1.000	1.000

Statistics

Upper Air Analysis: RH @25x25 km @ 0Z

Observation - Dhaka - April - RH

80

100

Statistics

Station	Patiala	Dhaka	Lhasa
RH Bias	-4.165	-13.948	-4.776
RH RMSE	7.243	15.576	6.421
RH Correlation Coefficient	0.867	0.953	0.969

Upper Air Analysis: Wind Speed @25x25 km @ 0Z

ICIMOD

Model

80

Observation - Lhasa - April - WSpd

Statistics

Station	Patiala	Dhaka	Lhasa
WS Bias	1.725	-0.432	0.276
WS RMSE	2.129	1.359	2.300
WS Correlation Coefficient	0.992	0.992	0.994

Upper Air Analysis: Wind Direction @25x25 km @ 0Z

Wind Direction

Wind Direction

Seasonal Cycle – Kathmandu ~ 1380 m Mountain Valley (25x25 km)

Kathmandu	RMSE	Bias	Correlation Coefficient
Pressure	12.007	-11.933	0.943
Temperature	4.002	-0.876	0.692
RH	26.512	-13.142	0.324
Wspeed	2.917	2.161	0.073

Seasonal Cycle – Lumbini (25x25 km) Foothills - Indo Gangetic Plains (~100 m)

Bhairawhawa	RMSE	Bias	Correlation Coefficient
Pressure	3.305	-0.08	0.888
Temperature	4.102	2.069	0.877
RH	39.897	-35.392	0.315
Wspeed	6.62	-0.34	0.221

Seasonal Cycle – NCOP (25x25 km) (~Everest base camp, 5079m)

NCO-P	RMSE	Bias	Correlation Coefficient
Pressure	2.226	-2.065	0.958
Temperature	2.877	-1.612	0.899
RH	25.759	10.972	0.691
Wspeed	4.539	2.946	0.291

Model Resolution – Kathmandu Valley 25x25 km D01 and @ 5kmx5km D02

Model Initialization – Kathmandu Valley FNL versus GFS forecast

Variable	Sensitivity Run	RMSE	Bias	Corelation Coefficient
Pressure	FNL (D-01)	4.114	-3.858	0.836
Pressure	GFS (D-01)	4.202	-3.950	0.840
Temperature	FNL (D-01)	3.871	1.300	0.527
Temperature	GFS (D-01)	3.913	1.420	0.532
RH	FNL (D-01)	26.370	-20.967	0.600
RH	GFS (D-01)	26.166	-20.187	0.588
Wspd	FNL (D-01)	5.468	4.790	0.304
Wspd	GFS (D-01)	5.485	4.795	0.270

Conclusions

- Hindu Kush Himalaya Region
 - Observation data scarce region
 - Development and wellbeing of the region very sensitive to weather, air quality and climate
 - Limited knowledge on regional scale NWP model performance
- Model Evaluation
 - <u>Temperature:</u> The model is able to capture the annual temperature variability at the surface sites with site specific positive and negative biases. Upper air monthly mean data analysis for temperature also shows positive and negative biases. Surface sites show RMSE values of ~4 C while upper air data shows RMSE values of ~1 C
 - <u>RH:</u> The model shows negative bias at two surface sites and at all upper air station data. High altitude surface site shows positive bias. Surface site RMSE for RH ranges from 26 40% while upper air data for RH ranges from 6-16%.
 - <u>WindSpeed</u>: Model shows both positive and negative biases at the surface sites as well as upper air data. RMSE values for surface sites range from ~3-6 m/s while upper air data show RMSE values ranging from 1.3 to 2.3 m/s.
 - <u>Wind direction</u>: Remains a challenge for the model at or near surface while monthly mean wind direction is well captured at upper altitudes.
- Model sensitivity
 - During the month of April, model does not show substantial improvement in meteorology parameters at Kathmandu site except for wind speed when comparing 25x25 km to 5x5 km model resolution.
 - Statistics at Kathmandu site do not show significant difference between model initialization with FNL versus GFS forecast data.

Thank you

The Atmosphere Initiative at ICIMOD

- Established in January 2013. Working areas:
- A. Improving knowledge about **emissions:** inventories, socioeconomic drivers.

- B. Atmospheric processes and change: Observatories, field campaigns, modelling (including weather and pollution).
- C. **Quantifying impacts**: on climate, cryosphere, water resources, agriculture, tourism, livelihoods.
- D. Assessing **mitigation options** (for example how to rebuild Kathmandu's brick kilns with feasible cleaner technology).
- E. **Capacity building:** Supporting PhD students, hosting short courses (eg. WRF-Chem tutorial).
- F. Outreach and networking: educational materials, films, regional meetings.
- **G.** Policy recommendations at national, regional and global levels.