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Mo#va#on and Goals
•  Previous	studies	over	the	Pacific	Northwest	(e.g.,	IMPROVE-2;	Garvert	et	
al.	2005;	Colle	et	al.	2005,	Lin	et	al.	2009,	…)	showed	many	bulk	micro	
schemes	over-predict	windward	precipitaNon	and	snow	aloO	(too	much	
cloud	water	lower	windward	slope	and	too	liPle	near	crest).	

•  There	are	large	bulk	microphysical	parameter	(BMP)	uncertainNes	to	
riming	and	other	ice	characterisNcs	(habit,	size	distribuNon,	density,	
etc…).		

•  Orographic	precipitaNon	is	also	highly	sensiNve	to	the	upstream	cross	
barrier	flow,	moisture,	and	stability.	

•  There	has	been	limited	verificaNon	of	orographic	flooding	events	(high	
freezing	levels)	over	the	PNW.	
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OLYMPEX Field Experiment 
•  Coastal	soundings:	Upstream	flow,	moisture,	and	stability	
•  WSR-88D/NPOL:	PrecipitaNon	evoluNon	around	barrier	
•  DOW/	MRR:	Detailed	precipitaNon	structures	over	windward	slope/valley	
•  Gauges/CitaNon	AircraO:	SpaNal	precipitaNon	amounts	and	microphysics	
verificaNon	



Mo#va#onal Ques#ons

• How	do	the	orographic	precipitaNon	structures	
evolve	for	these	flooding	cases	(focus	on	12-13	
Nov	2015	event)?	
• How	well	do	the	various	bulk	microphysical	
schemes	(BMPs)	in	WRF	predict	these	precipitaNon	
structures	and	amounts?	
• Are	there	any	microphysical	differences	aloO	
between	the	BMPs?	



WRF Model Setup
•  Three	heavy	precipitaNon	cases	simulated	(12-13	Nov	2015,	17-18	Nov	2015,	and	8-9	Dec)	
•  WRF	V3.7.1	at	9,	3,	and	1	km	grid	spacing	(50	verNcal	levels).	
•  IC/BCs:	(GFS	analyses	and	NARR	–	so	far)	
•  MYJ	PBL,	Grell-Freitas	(9	km),	RRTMG	
•  36-h	runs	starNng	(11/12/12z,	11/16/12z,		
					and	12/08/00z).	First	9-h	spin-up.	

					Bulk	Microphysical	Schemes	(BMPs)	
•  Thompson	–	(2008)	~2D	ice,	ice	size	

distribuNon	from	Field	et	al.	(2005),	
variable	riming	efficiency.	

•  Morrison	(MORR,	2-moment	-2009)	
predicts	number	concentraNon	(Nx)	to	
get	snow/ice	size	distribuNon	(l)	and	
intercept	(Nos).	Spherical	ice/snow.	

•  Stony	Brook	(SBU,	2011)	Uses	Nos(T),	~2-
D	ice/snow,	combines	snow	and	graupel	
into	one	category,	and	a	degree	of	riming	
is	esNmated	and	variaNons	in	snow	
density	(T).	Snow/rime	properNes	not	
advected	horizontally.	

•  P3	(2015)	(Control	Run)	Four	prognosNc	
mixing	raNo	variables	(total	ice	mass,	
rime	ice	mass,	rime	volume,	and	total	
number)	predict	the	bulk	parNcle	
properNes	of	a	single	ice-phase.	Advects	
ice/rime	properNes.	
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12-13 November 2015 Event
•  Significant	atmospheric	river	(~30	mm	PWTR:	obs	and	in	
WRF)	
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Stability/Flow Evolu#on (Obs-CSU vs WRF)

•  Before	0300	UTC	13	
November	–	Stable	
layer	between	950	and	
800	hPa	

•  Closer	to	moist	neutral	
aOer	0600	UTC	13	
November	

•  Freezing	level	slowly	
rising	from	2.3	to	2.7	
km	AMSL.	
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Surface Obs and WSR-88D (dBZ; 0.5 deg)  
and 1-km WRF-P3 (dBZ and sfc V/Temp)
2100	UTC	12	Nov	2015	 0600	UTC	13	Nov	2015	 1200	UTC	13	Nov	2015	
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NPOL SW-NE Cross Sec#on Comparison
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13 Nov 2015 Precipita#on Total (in mm) and 1-km WRF % of Obs

•  250-300	mm	was	
observed	over	
SW	lower	
windward	slopes	

•  WRF	schemes	
underpredicted	
windward	precip	
by	10-30%,	
especially	MORR.	
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12-13 Nov Precipita#on Time Series (Prairie Creek)



WRF Micro Along NPOL Sec#on (08 UTC 13 Nov)
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WRF Micro Along NPOL Sec#on (08 UTC 13 Nov)
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•  P3	predicts	larger	ice	
parNcle	sizes	than	
SBU	and	MORR	
(graupel)	

•  P3	parNcle	density	
and	fall	speed	
increases	
dramaNcally	below	3	
km.		
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Cita#on Aircra] Micro Comparisons with WRF BMPs
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Conclusions
•  For	the	12-13	November	2015	event,	relaNvely	large	low-
level	stability	early	in	the	event	resulted	in	flow	spliqng	
and	maximum	precipitaNon	immediately	west	of	the	lower	
windward	slope.	
• As	the	stability	decreased	the	maximum	precipitaNon	
shiOed	over	the	Olympics	higher	terrain.	
• WRF	BMPs	underpredicted	precipitaNon	over	the	lower	
windward	slope	by	10-30%.		Some	of	this	was	the	result	of	
the	precipitaNon	ending	too	soon.	
• WRF	P3	scheme	more	realisNcally	predicted	the	amounts	
and	precipitaNon	rate	which	is	parNally	(mostly?)	aPributed	
to	more	riming	and	precipitaNon	fallout.		
• Morrison	(2009)	scheme	showed	largest	underpredicNon	in	
precipitaNon	likely	due	to	minimal	graupel	“riming”	
producNon	and	reduced	precipitaNon	fallout.	



Cita#on Aircra] Micro Comparisons with WRF (P3 and MORR)
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WRF Micro Along NPOL Sec#on (08 UTC 13 Nov)
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