Evaluating Cloud Microphysical Schemes in Simulating Orographic Precipitation Events Using OLYMPEX Field Experiment Observations

Aaron R. Naeger¹, Brian A. Colle², and Andrew Molthan³ ²University of Alabama at Huntsville, Earth System Science Center, Huntsville, AL ²School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY ³NASA Marshall Space Flight Center, Huntsville, AL

This work is supported by NASA PMM #NNX16AD81G

Motivation and Goals

- Previous studies over the Pacific Northwest (e.g., IMPROVE-2; Garvert et al. 2005; Colle et al. 2005, Lin et al. 2009, ...) showed many bulk micro schemes over-predict windward precipitation and snow aloft (too much cloud water lower windward slope and too little near crest).
- There are large bulk microphysical parameter (BMP) uncertainties to riming and other ice characteristics (habit, size distribution, density, etc...).
- Orographic precipitation is also highly sensitive to the upstream cross barrier flow, moisture, and stability.
- There has been limited verification of orographic flooding events (high freezing levels) over the PNW.

OLYMPEX Field Experiment

- Coastal soundings: Upstream flow, moisture, and stability
- WSR-88D/NPOL: Precipitation evolution around barrier
- DOW/ MRR: Detailed precipitation structures over windward slope/valley
- Gauges/Citation Aircraft: Spatial precipitation amounts and microphysics verification

Motivational Questions

- How do the orographic precipitation structures evolve for these flooding cases (focus on 12-13 Nov 2015 event)?
- How well do the various bulk microphysical schemes (BMPs) in WRF predict these precipitation structures and amounts?
- Are there any microphysical differences aloft between the BMPs?

WRF Model Setup

- Three heavy precipitation cases simulated (12-13 Nov 2015, 17-18 Nov 2015, and 8-9 Dec)
- WRF V3.7.1 at 9, 3, and 1 km grid spacing (50 vertical levels).
- IC/BCs: (GFS analyses and NARR so far)
- MYJ PBL, Grell-Freitas (9 km), RRTMG
- 36-h runs starting (11/12/12z, 11/16/12z, and 12/08/00z). First 9-h spin-up.

Bulk Microphysical Schemes (BMPs)

- <u>Thompson</u> (2008) ~2D ice, ice size distribution from Field et al. (2005), variable riming efficiency.
- Morrison (MORR, 2-moment -2009) predicts number concentration (Nx) to get snow/ice size distribution (I) and intercept (Nos). Spherical ice/snow.
- <u>Stony Brook</u> (SBU, 2011) Uses Nos(T), ~2-D ice/snow, combines snow and graupel into one category, and a degree of riming is estimated and variations in snow density (T). Snow/rime properties not advected horizontally.
- <u>P3</u> (2015) <u>(Control Run)</u> Four prognostic mixing ratio variables (total ice mass, rime ice mass, rime volume, and total number) predict the bulk particle properties of a single ice-phase. Advects ice/rime properties.

12-13 November 2015 Event

Significant atmospheric river (~30 mm PWTR: obs and in WRF)

Stability/Flow Evolution (Obs-CSU vs WRF)

- Before 0300 UTC 13 November – Stable layer between 950 and 800 hPa
- Closer to moist neutral after 0600 UTC 13 November
- Freezing level slowly rising from 2.3 to 2.7 km AMSL.

NPOL SW-NE Cross Section Comparison

NPOL SW-NE Cross Section Comparison

13 Nov 2015 Precipitation Total (in mm) and 1-km WRF % of Obs

12-13 Nov Precipitation Time Series (Prairie Creek)

WRF Micro Along NPOL Section (08 UTC 13 Nov)

WRF Micro Along NPOL Section (08 UTC 13 Nov)

Citation Aircraft Micro Comparisons with WRF BMPs

Conclusions

- For the 12-13 November 2015 event, relatively large lowlevel stability early in the event resulted in flow splitting and maximum precipitation immediately west of the lower windward slope.
- As the stability decreased the maximum precipitation shifted over the Olympics higher terrain.
- WRF BMPs underpredicted precipitation over the lower windward slope by 10-30%. Some of this was the result of the precipitation ending too soon.
- WRF P3 scheme more realistically predicted the amounts and precipitation rate which is partially (mostly?) attributed to more riming and precipitation fallout.
- Morrison (2009) scheme showed largest underprediction in precipitation likely due to minimal graupel "riming" production and reduced precipitation fallout.

Citation Aircraft Micro Comparisons with WRF (P3 and MORR)

WRF Micro Along NPOL Section (08 UTC 13 Nov)

