Testing of Stochastic Physics Approach for Use in Regional Ensembles

Isidora Jankov*, Judith Berner**, Jeff Beck* and Hongli Jiang* *NOAA/ESRL/GSD affiliated with CIRA and DTC, **NCAR Georg Grell, Joseph Olson, Tatiana Smirnova, John Brown and Stan Benjamin Special Thanks: John Halley Gotway, Tatiana Burek, Tara Jensen and Tressa Fowler

Stochastic physics for use in Regional Ensembles

Motivation

- Issues with mixed-physics approach
 - Maintenance
 - Inconsistent ensemble system (some schemes closer related than others)
 - Each member has a unique climatology and mean error
- Compare mixed-physics approach to stochastic parameter perturbation (SPP), Stochastic Kinetic Energy Backscatter (SKEB) and Stochastic Perturbation of Physics Tendencies (SPPT).

Experiment Design

- Regional RAP model simulations
- 7 days from 2013 convective season: May 23,29; June 7, 14, 20, 28; July 4
- 24 h forecasts

DTC

- 00 and 12 Z initializations using different GEFS members
- Stochastic Parameter Perturbation, SKEB and SPPT
- Focus on convective Grell-Freitas and MYNN PBL
- Verification performed over CONUS
- Statistical significance testing by employing boot strap method with 95% confidence interval

Mixed-physics and stochastic members

Mixed- physics members	Convective	PBL	LSM	Stochastic	Convective	PBL	LSM
control0	OSAS	MYNN	RUC	stoch0	GF-pert	MYNN	RUC
contol1	BMJ	MYNN	RUC	stoch1	GF-pert	MYNN	RUC
control2	GF	MYNN	RUC	stoch2	GF-pert	MYNN	RUC
control3	NSAS	MYNN	RUC	stoch3	GF-pert	MYNN	RUC
control4	GF	MYJ	RUC	stoch4	GF	MYNN-p	RUC
control5	GF	YSU	RUC	stoch5	GF	MYNN-p	RUC
control6	GF	BOULAC	RUC	stoch6	GF	MYNN-p	RUC
control7	GF	MYNN	RUC	stoch7	GF	MYNN-p	RUC

Perturbed parameters

MYNN PBL: Turbulent mixing length Sub-grid cloud fraction Roughness length (T & moist.)

Developmental Testbed Center

4

Precipitation Rank histograms for 00 Z initialization:

5

Ensemble Mean Bias – 00Z init.

Ensemble Mean GSS – 00Z Init.

spp_skeb_sppt spread significantly higher when compared to the control experiment, for most of the lead times (longer than 6hrs) and all variables.

Stoch. + SPP impact for OOZ runs

Summary

- Alone, the parameter perturbations of SPP introduce insufficient spread.
- When combined with SKEB and/or SPPT the spread is as large and for some instances even larger than for a multi-physics ensemble.
- An ensemble created by combining three stochastic approaches (SPP, SKEB and SPPT generally outperformed the multi-physics, control ensemble for most of the examined variables, most of the evaluated lead times, and most of the employed statistics.
- SKEB made a larger impact on spread associated with upper level wind and geopotential heights, while SPPT had a larger impact on spread for near-surface temperature.
- Combining SPP with SPPT has generally a positive impact, on the order of a 2-10% improvement over an ensemble using SPPT alone.

1. The results confirm the findings of previous studies that parameter perturbations alone do not generate sufficient spread to remedy the

under-dispersion in short-term ensemble forecasts

2. A combination of several stochastic schemes outperforms any single scheme. This result implies that a synthesis of different approaches is best suited to capture model error in its full complexity.

Current and Future Work

- Adding 14 more cases to the previous study
- Experimenting with HRRR (3km grid spacing) for application in HREF (for both ensemble DA and forecasting purposes)
- Focus on PBL and LSM:
 - PBL-In addition to mixing length, roughness length and cloud fraction we added perturbations to mass fluxes
 - LSM-Hydraulic Conductivity is currently being perturbed

