WRF Computing Best Practices

Adding or modifying compilable WRF
source code

Adding or modifying compilable WRF
source code

Does WRF care about free vs fixed form?

The WRF source code is mostly a free-
formatted Fortran code base.

The configure.wrf file has explicit rules for the
free and fixed codes.

The WRF build system assumes that all of user
contributed code will compile as free-
formatted.

Adding or modifying compilable WRF
source code

Is there a Fortran standard to which the user
should adhere?

There are a few Fortran 2003 capabilities
included, and most recent compilers support
these.

Do not attempt to utilize coarrays or other more
exotic additions to the Fortran standard.

Compilers vary in there support for newer
capabilities, both being able to compile them,
and to use them efficiently.

Adding or modifying compilable WRF
source code

* How should the call to my new physics
package be done?

* Look in the specific driver for examples of
existing calls. For example phys/
module radiation_driver.F

Adding or modifying compilable WRF
source code

How should the call to my new physics package
be done?

All top level physics routines are called with a 3d
block of data.

18 dimensions are always passed:

|, J, Kdimensions

domain, memory, and computational sizes
starting and ending

Adding or modifying compilable WRF
source code

* How should the call to my new physics
package be done?

CALL cal cldfral (CLDFRA,qv,qc,qi,gs,
F QV,F QC,F QI ,F QS,t,p,
F_ICE PHY,F RAIN PHY,
ids,ide, jds,jde, kds, kde,
ims,ime, jms,jme, kms, kme,
its,ite, jts,jte, kts,kte

~ R R

Adding or modifying compilable WRF
source code

Where does WRF assume that the values inside
of the physics schemes are located?

The physics schemes are column oriented, no
communications are required top to bottom.

The values are located at mass points.

Some variables are located on full eta level
(usually denoted with the cryptic convention
“8w”), but most 3d variables are located on the
computational half layer locations.

Adding or modifying compilable WRF
source code

If a new variable was added in the Registry, at
what point does this get manually introduced in

the subroutine calling tree?

All variables in the Registry (state + namelist
options) are in the derived data structure “grid”.

When “grid” is available, the new variable does
not need to be dereferenced from the structure.

The calls to the drivers in
module_first rk_step partl.F exhibit the
required dereferencing.

Adding or modifying compilable WRF
source code

If a new variable was added in the Registry, at
what point does this get manually introduced
in the subroutine calling tree?

CALL radiation driver (
ACFRCV=grid%acfrcv ,
ACFRST=grid%acfrst ,
ALBEDO=grid%albedo ,

R 2 &2

Adding or modifying compilable WRF
source code

* |f a new variable was added in the Registry, at
what point does this get manually introduced in
the subroutine calling tree?

* The call to the specific driver needs to have the
new variable explicitly passed in from
module_first_rk_step partl.F (or from the solver
for the microphysics routines).

* User modifications are then required in all
deeper routines.

Adding or modifying compilable WRF
source code

e |fthere is a new variable that needs to be
communicated, how is that set up in WRF?

* All communications in WRF are a combination
of two items: manual inclusion of compilable

source code, and manual inclusion of
communications information in the Registry.

* The source modifications “cpp include” a file
into the source prior to compilation.

Adding or modifying compilable WRF
source code

e |f thereis a new variable that needs to be
communicated, how is that set up in WRF?

 The developer may choose to communicate
the variables immediately after the
computation is performed to manufacture the
new variable, or wait until the new variable’s
halo is needed.

Adding or modifying compilable WRF
source code

If there is a new variable that needs to be
communicated, how is that set up in WRF?

#ifdef DM PARALLEL

include
"PERIOD BDY EM A.inc"

#endif

Adding or modifying compilable WRF
source code

* How do you access a particular hydrometeor
from the 4d array moist?

e The name associated with the variable defined

in the Registry is used to construct a Fortran
PARAMETER value.

* This integer index should always be used to
refer to the particular 3d array.

Adding or modifying compilable WRF
source code

How do you access a particular hydrometeor
from the 4d array moist?

Registry, first few parts of the QVAPOR line:

state real qv ikjftb
moist

Source code:

qqvf = 1. +
rvovrd*moist(i,k,J,P QV)

Adding or modifying compilable WRF
source code

How do you access a particular hydrometeor
from the 4d array moist?

Loops over the 4d arrays should always begin and
end with the WRF specific starting values:

DO im = PARAM FIRST SCALAR,
num 3d m

gtot = gqtot + moist(i,k,J,1im)
ENDDO

Adding or modifying compilable WRF
source code

* How do you access a particular hydrometeor
from the 4d array moist?

 These automatically generated values are
inside module state description.

* When these generated indexes are required
for new code, USE module_state description.

Adding or modifying compilable WRF
source code

With modern Fortran, how do | get information
from the module?

A “use association” is employed in WRF.

To restrict the number of symbol names that are
shared, the WRF code tends to restrict the
variables requested with the ONLY clause.

Mostly this “ONLY clause” is added to keep
compilers from complaining about source code

being “too complex” when the used module is
large.

Adding or modifying compilable WRF
source code

 With modern Fortran, how do | get
information from the module?

* USE module configure, ONLY : grid config rec type
* USE module driver constants

* USE module machine

* USE module tiles, ONLY : set tiles

Adding or modifying compilable WRF
source code

 With modern Fortran, how do | get
information from the module?

* Typically when adding in communications or
new physics packages, the USE statements
need to be amended to include the new
Registry information.

Adding or modifying compilable WRF
source code

If there are known restrictions for packages,
how can that information be used at model

initialization?

There are two mechanisms in WRF for
handling error checking for the physics
schemes:

phys/module_physics_init.F
share/module check _a mundo.F

Adding or modifying compilable WRF
source code

* If there are known restrictions for packages, how
can that information be used at model
initialization?

* The tests in physics_init are more aligned with
modifying 2d and 3d arrays depending on the
values of namelist settings or other 2d and 3d
arrays. Initializations for each domain take place.

 To avoid OpenMP race conditions, this is a much
better way to fix zeroed-out variables.

Adding or modifying compilable WRF
source code

* |f there are known restrictions for packages,
how can that information be used at model

initialization?

* The purpose for check_a_mundo is to stop

incompatible namelist options. If a user
knows that a certain scheme is only set up to
work with one type of PBL, then that needs to

be included.

Adding or modifying compilable WRF
source code

* What does the WRF model mean by “restart”,
and how does it impact a developer?

* Arestartin WRF allows a model simulation to
continue from an interrupted state, AND to
produce bit-wise identical results to those
generated from a non-interrupted simulation.

* Developers need to provide information as to
which variables need to be saved for a restart
run.

Adding or modifying compilable WRF
source code

What does the WRF model mean by “restart”, and how
does it impact a developer?

The restart variables are explicitly listed in the Registry.

state real rimi ikj misc \
1 - irh \
"RIMI" "riming intensity" \

"fraction"

Adding or modifying compilable WRF
source code

What does the WRF model mean by “restart”, and how
does it impact a developer?

The physics_init routine needs to avoid resetting
restarted variables, which requires user modification.

IF(.not.restart) THEN
IF (PRESENT (rliq)) THEN
rlig(:,:) = 0.0

ENDIF
ENDIF

Adding or modifying compilable WRF
source code

e Will the WRF community sing my praises if |,
as a developer, include lots of inline
documentation?

*YES!

Adding or modifying compilable WRF
source code

* |sthere a mechanism to output the namelist
options that are being developed?

* The file share/output wrf.F handles the
metadata output:

* ibuf (1) = config flags%e we - config flags%s we + 1
* CALL wrf put dom ti integer (fid , &
'WEST-EAST GRID DIMENSION' , ibuf , 1 , ierr)

Adding or modifying compilable WRF
source code

* |sthere a mechanism to output the namelist
options that are being developed?

* Routines exist to output integer, real, logical,
and character strings.

Adding or modifying compilable WRF
source code

 What WRF infrastructure exists to make
coding easier for such processing as global
sums, global extrema and locations of

extrema?

 There are a few routines in WRF that handle
these types of capabilities for most traditional
data types (real, double, integer).

Adding or modifying compilable WRF
source code

 What WRF infrastructure exists to make
coding easier for such processing as global
sums, global extrema and locations of

extrema?

 There are a few routines in WRF that handle
these types of capabilities for most traditional
data types (real, double, integer).

Adding or modifying compilable WRF
source code

 What WRF infrastructure exists to make coding
easier for such processing as global sums, global
extrema and locations of extrema?

* latl = wrf dm min real (latl)

* Please see example #3 for a more complete list

and examples of usage:
* http://www2.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Registry 2.pdf

Adding or modifying compilable WRF
source code

* How about initializations that can only be
handled on the master node?

* Even for serially-built code, the following is
defined:

* IF (wrf dm on monitor()) THEN

Adding or modifying compilable WRF
source code

* How does info get from the master node to
the other processors?

* Again for native data types, a variable (and the
number of words) can be broadcast to all of
the processors from the master.

* CALL wrf dm bcast integer(nt,1)

Adding or modifying compilable WRF
source code

If information is in the namelist, how is it
accessed inside the code?

There are three methods to get namelist
information:

grid%
config_flags%
subroutine calls

Adding or modifying compilable WRF
source code

* If information is in the namelist, how is it
accessed inside the code?

* Any time the “grid” structure is present, the
namelist option may be dereferenced as an
existing field in the derived structure:

* p_top requested = grid%p top requested

Adding or modifying compilable WRF
source code

e If information is in the namelist, how is it
accessed inside the code?

e Similarly, the derived structure config_flags
holds the namelist information for the current
grid being processed:

* IF (config flags%spec bdy width .GT. &
. flag excluded middle) THEN

Adding or modifying compilable WRF
source code

e If information is in the namelist, how is it
accessed inside the code?

 The WRF code automatically builds two
subroutines for each namelist variable, a “get”
and a “set” subroutine. Mostly, developers are
interested in the “get” option. Argument #1 is
which domain, and argument #2 is the local
returned value.

* CALL nl get base pres (1 , p00)

Adding or modifying compilable WRF
source code

 What are the available options for outputting
debug print information?

e Because not all print buffers are guaranteed
to be flushed on an error exit, it is better to
use WRF supplied print-out functions.

* Also, use the WRF provided fatal error
function instead of a Fortran STOP statement.

Adding or modifying compilable WRF
source code

 What are the available options for outputting
debug print information?

* CALL wrf debug (200 , ' call end of solve em')

* CALL wrf message('ndown: using namelist
constants')

* CALL wrf error fatal('Use km opt=2 with
sfs opt=2')

Adding or modifying compilable WRF
source code

If a developer wants an event to occur every so
often, how is that accomplished?

Be wary of a simple
MOD (current_time , some_interval) ==

set up. For large values of current time, the
statement may eventually never be true again.
For a fixed time step, the integer number of time
steps might be preferable:

* IF (mod(itimestep,STEPFG) .eq. 0) THEN

Adding or modifying compilable WRF
source code

 What is supposed to happen with OPTIONAL
variables and the CPP ifdef’ing?

* First, this is required due to the two different
dynamical cores inside of WRF, and even for ARW
the DA and Chem codes do not need all variables.
To allow the physics schemes to work with both
cores (and the Chem and DA options), some
variables are considered optional because they
are not present at all times.

Adding or modifying compilable WRF
source code

 What is supposed to happen with OPTIONAL
variables and the CPP ifdef’ing?

 For a new scheme, if only a “few” variables are to
added to both cores, it is reasonable to add the
variables to both the ARW and NMM Registry
files (similarly, the DA and Chem Registry files).

e |f LOTS of variables are to be added, it is better to
go the OPTIONAL variable route.

Adding or modifying compilable WRF
source code

 What is supposed to happen with OPTIONAL
variables and the CPP ifdef’ing?

 The variables that are only required for one of
the build options are ifdef’ed out in the calling

routine (for example the first_rk_step part1 file
* #ifdef WRF CHEM
& ,CHEM=chem,chem opt=config flags%chem opt
* #endif

Adding or modifying compilable WRF
source code

 What is supposed to happen with OPTIONAL
variables and the CPP ifdef’ing?

* Always add new variables to a Registry
package to minimize the model’s memory

footprint. The variables are allocated, but
only with a (1,1,1) size.

* When using OPTIONAL arguments, always test
if the variable is PRESENT before using.

Adding or modifying compilable WRF

| source code
What is supposed to happen with OPTIONAL

variables and the CPP ifdef’ing?

IF (PRESENT(rainshv)) THEN
DO j=j start(ij),j _end(ij)
DO i=i start(ij),i _end(ij)
RAIN (i,j) = RAIN(i,j) +
RAINSHV (i,)
ENDDO
ENDDO
END IF

Adding or modifying compilable WRF
source code

 What are the usual ifdef syntaxes that are to
be used?

* To avoid the situation where a compile-time
option is set to zero (where the intent was to
turn the option OFF), the WRF ifdef’s test on
the number “1”.

Adding or modifying compilable WRF
source code

What are the #ifdef syntaxes that are to be
used?

$if (DA CORE == 1)
$if (WRF CHEM == 1)
#if (NMM CORE == 1)

$if (EM CORE == 1)

Adding or modifying compilable WRF
source code

 What type of communications are allowed
between columns in the physics schemes?

* By default, the physics schemes are column
oriented, with no impact permitted from
neighbors.

e This means NO horizontal differences or
horizontal averaging inside the physics
schemes.

Adding to or modifying the WRF
Registry

Adding to or modifying the WRF
Registry

What is the WRF Registry?

The WRF Registry is an active data dictionary.
It is a text-based file that is user-modifiable.

Every variable used with |/O, communications,
namelist option is in the Registry.

All associations of variables with physics
schemes are handled by the Registry.

Adding to or modifying the WRF
Registry

What is the WRF Registry?

T

T
fi

ne text-based file is read by a program.
nis registry program manufactures include

es that are CPP #include’d during the WRF

build process.

More than 300 thousand lines of
automatically generated code are included in
the WRF source code via the registry program.

Adding to or modifying the WRF
Registry

 What are the different types of model variables
in the Registry?

 Most users are concerned with the gridded data
or with the namelist variables. The Registry
handles both of these.

 The gridded data is either “state” (available
throughout the duration of the simulation) or the
data is “i1” (tendency variables that pop off the
stack at the conclusion of each time step).

Adding to or modifying the WRF
Registry

 What are the different types of model
variables in the Registry?

e Please see for more information on the
Registry:

* www.mmm.ucar.edu/wrf/users/tutorial/201401/
WRF Registry 1.pdf

Adding to or modifying the WRF
Registry
How is I/O handled in the Registry?

There are multiple streams (think of these as
separate unit numbers) for input and output.

Each variable may be in zero or more streams.
The WRF naming convention for the streams:
| => input

h => history

r => restart

Adding to or modifying the WRF

Registry
How is I/O handled in the Registry?

#<Table> <Type> <Sym> <Dims>
state real LAT ij

#<Use> <NumTLev> <Stagger>

misc 1 -

<I0>
10123rh01{22} {23}du=(copy_ fcnm)

#<DNAME> <DESCRIP>

"XLAT" "LATITUDE, SOUTH IS NEGATIVE"

<UNITS>
"degree north"

Adding to or modifying the WRF
Registry

How is I/O handled in the Registry?

For input and history, the default stream
number is “0”.

The default input stream: wrfinput_<domain>

The default output stream:
wrfout_<domain> <date>

Adding to or modifying the WRF
Registry
 How is I/O handled in the Registry?

e A stream specification of “ih” assumes the
field is in the input stream and will be output
to the WRF history file. The numeral zero is
assumed present if there are no numerals.

“o:7

e Numerals are added after the characters “i” or
“h” to indicate additional (nonstandard)
streams for the fields.

Adding to or modifying the WRF
Registry
 How is I/O handled in the Registry?

* Once explicit stream numbers are specified,
the “zero” stream must also be specifically
requested, as in i01.

* Streams with more than one digit, for example
stream #14, would be surrounded by “{}”, as
in {14}

Adding to or modifying the WRF
Registry
How is I/O handled in the Registry?

First couple entries for the eta levels:
state real znu k dyn em 1 -
irh

state real znw k dyn em 1 Z
10rh

Note that irh and iOrh are identical specifications.

Adding to or modifying the WRF
Registry

 How is I/O handled in the Registry?

* The 2-m temperature is available for input
from real (i0), input from metgrid (i1), output
to the default history file (h0), and output to
an auxiliary stream (h{23}):

* state real T2 ij misc 1 - 101rh0{23}

Adding to or modifying the WRF
Registry
How is I/O handled in the Registry?

All variables involved with 1/0 are required to be
state.

The state variables may be real, double, integer,
character, or logical.

Variables for I/0O must be 0d, 1d, 2d, 3d, or part
of a known 4d amalgamation.

Only one time slice of two-time-level fields is
output.

Adding to or modifying the WRF
Registry

How is I/O handled in the Registry?

2d arrays must be (i,j).
3d arrays must be decomposed in (i,j).

4d arrays must be the special scalar-type
aggregations of 3d arrays (they are processed
as lists of 3d array elements).

Adding to or modifying the WRF
Registry

 How is I/O handled in the Registry?

* The Registry is not involved in the actual
format of the input or output data.

 The format, frequency, name of the file, etc.

are all run-time options (though the namelist
options controlling those capabilities are
defined in the Registry).

Adding to or modifying the WRF
Registry

* How is I/O handled in the Registry?

* Only use an “i” for variables that are input. For
example, convective precipitation is not input
from the real program, and should not have an

{“w:79

* Similarly, developers tend to think every variable
that was used is vital. Judiciously select those
that will be given an “h” designation.

Adding to or modifying the WRF
Registry
* How is I/O handled in the Registry?

* The “r” designator is mandatory for fields that
are required to manufacture an identical
simulation, when comparing a restart run to a
non-restart run.

* |Including an “r” for non-mandatory fields makes
the restart file larger and the associated I/O
slower, but otherwise has no negative forecast
Impact.

Adding to or modifying the WRF
Registry

How is nesting handled in the Registry?

The same block of information controlling the 1/0
has a few keywords that control the nesting.

u => feedback up to parent mesh

d => horizontally interpolate down to child
domain

f => lateral boundary forcing
s => smoothing on CG in area of FG

Adding to or modifying the WRF
Registry

How is nesting handled in the Registry?

The “u”, “d”, and “f” options are able to use a
default for most continuous variables (though the
horizontal staggering is important).

Developers may associate a new subroutine with
a new physics variable, though this is not too
common.

Almost all of the lateral boundary forcing is the
dynamics variables, with no usage for the physics
variables.

Adding to or modifying the WRF
Registry

* How is nesting handled in the Registry?

* As with most Registry items, it is usually safest
for a developer to copy a similar (and existing)
Registry line for the initial idea for a new

variable.

Adding to or modifying the WRF
Registry

* How is nesting handled in the Registry?

* Developers handling land surface fields must
be concerned with masking.

* An average across the spatial extent of a
parent cell might include both water and land
points from the child, which would feedback
garbage to the parent.

Adding to or modifying the WRF
Registry

How is nesting handled in the Registry?

While the mnemonics of “u” and “d” refer to “up” and
“down”, respectively, the WRF nesting code is general.

d => once only, at the start of the model simulation

u => child to parent, at the end of each set of child
time steps (that bring the child and parent to the same

time)
f => parent to child, at the start of each set of child
time steps

Adding to or modifying the WRF
Registry
How is nesting handled in the Registry?
For example, CG SST may be handed to the FG at

each CG step via an “f” option (subroutine:
c2f interp):

state real OM TMP \
i{nocnl}j misc 1 Z \
i01l2rhdu=(copy fcnm) \

f=(c2f interp:grid id) \

"OM TMP" "temperature" "k"

Adding to or modifying the WRF
Registry

How is communication handled in the Registry?

There are three kinds of communications
possible with WRF:

halo => next door neighbor
period => west-east or south-north exchange

transpose => inside ARW proper - largely for
FFTs

Most developers (if they are concerned) are only
concerned with halo communications.

Adding to or modifying the WRF
Registry

* How is communication handled in the Registry?

 The halo comms are specified for a list of
variables, and the size of the stencil for each

those variables.

* halo HALO EM PHYS A dyn em 4:u 2,v 2

* Please see for more information on WREF stencils:
* www.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_ Software.pdf

Adding to or modifying the WRF
Registry

* How is communication handled in the Registry?

* Overspecifying the size of the stencil has no ill
effects on results, it is just a performance sink.

* The same communication pattern may “used”
inside of WRF multiple times.

e #ifdef DM_PARALLEL
e # include "HALO EM PHYS A.inc"
e #endif

Adding to or modifying the WRF
Registry

How does the Registry help with memory
management?

The Registry offers a “package” option which
associates state variables with particular namelist
options.

Developers should include this for their schemes.

Non-used package variables are allocated only
with 1 word of space (for example: (1,1,1) for a
3d array, and (1,1) for a 2d array).

Adding to or modifying the WRF
Registry

 How does the Registry help with memory
management?

* The package option is able to handle conditional
namelist settings through the use of derived
namelist settings.

 The data used from metgrid by the real program
is not required by the WRF model, soitisin a
package controlled by a derived namelist
variable.

Adding to or modifying the WRF
Registry

How does the Registry help with memory
management?

rconfig integer use wps input \
derived 1 0

package realonly use wps input==1 - \
state:u_gc,v_gc,...

Talk #1: WRF Parallelism Best Practices

Review of WRF: patch, tile, halo

How MPI and OpenMP fit into WRF parallelism

Strong vs weak scaling

Choosing domains: appropriate to core count, aspect ratio, timing vs memory
Domain and computation decomposition: MPl and OpenMP

Impact of nesting on core counts

Nesting overhead

Patch, Tile, Halo

WRF Software
Architecture

: Registr
Driver sistry
Config DM comm
. Solve — /O API
Inquiry OMP
- '§ % o Data formats, | -
Config WREF Tile-callable S |28 p .
. n o wm arallel I/O
Module Subroutines =218 z
HS A
]

* Hierarchical software architecture

— Insulate scientists' code from parallelism and other architecture/implementation-
specific details

— Well-defined interfaces between layers, and external packages for communications,
/0, and model coupling facilitates code reuse and exploiting of community
infrastructure, e.g. ESMF

WRF Software

Driver Registry
Config DM comm
: Solve — /O APT
Inquiry OMP
- € & o Data formats,| -
Config WREF Tile-callable SRE H parallel U0 |-
Module Subroutines =218 2
=S A
1

* Driver Layer

— Domains: Allocates, stores, decomposes, represents abstractly as single
data objects

— Time loop: top level, algorithms for integration over nest hierarchy

WRF Software

: Registr
Driver gistry
Config DM comm
—> : Solve /O API
Inquury OMP
Confi WRF Tile-callable Fé % %D Data formats,| -
3 : O |2 g Parallel /O |
Module Subroutmes 2|8 @
H A
]

* Mediation Layer
— Solve routine, takes a domain object and advances it one time step
— Nest forcing, interpolation, and feedback routines

WRF Software
Architecture

: Registr
Driver sistry
Config DM comm
=) . Solve — /O API
Inquiry OMP
- '§ % o Data formats, | -
Config WREF Tile-callable S |28 p .
. o wm arallel I/O
Module Subroutines =218 2
== A
1

* Mediation Layer

— The sequence of calls for doing a time-step for one domain is known in
Solve routine

— Dereferences fields in calls to physics drivers and dynamics code
— (alls to message-passing are contained here as part of Solve routine

WRF Software

: Registr
Driver sistry
Config DM comm
. Solve — /O API
Inquiry OMP

: G |8 o Data formats,| -

=) Config WREF Tile-callable S 2 5 parallel 1O |
Module Subroutines —E 0 Z
=g

1

* Model Layer

— Physics and Dynamics: contains the actual WRF model routines are
written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain

Call Structure Superimposed
on Architecture

wrf (main/wrf.F)

N Driver
integrate (frame)
Conﬁg solve_interface -> solve _em (dyn em) %0 I/O API
:hlcﬂlufy module first rk step partl (dyn_em) 'R{P

module cumulus_driver (phys) |

:

Data formats,| -

Config w{g
Module

G3 (phys/module cu g3.F ,

Message
Passing

L
Threads

Parallel /O | |

When
Needed?

Why?

Signs in
code

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and —1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’ s updates to that element of the
array won’ t be seen on this processor.

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion s (tendency, rr, var,

DO j = jts,jte

DO k kts,ktf

DO i = its,ite
mrdx=msft (i, j) *rdx
mrdy=msft (i, j) *rdy

tendency (i, k, j)=tendency(i,k,j) -

(mrdx*0.5* ((rr(yk,j)+rr(i,k,J)) *H1(yk,J3) -
(rr(i-1,k,j)+rr(i, k,3j))*H1(i ,k,3j))+

mrdy*0.5* ((rr (i, k,)+rr(i,k,j))*H2(i,k,) -
(rr(i,k,i-1)+rr(i, k,3))*H2(i,k,j))-

msft(i,j)*(Hlavg(i,k+1,j)-Hlavg(i,k,j)+
H2avg(i,k+1,]j)-H2avg(i,k,])

) /dzetaw (k)

2R 2R R R R R

ENDDO
ENDDO
ENDDO

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion s (tendency, rr, var,

DO j = jts,jte

DO k kts, ktf

DO i = its,ite
mrdx=msft (i, j) *rdx
mrdy=msft(i,j) *rdy

tendency (i,k, j)Ftendency (i, k, j) -

(mrdx*0.5* ((rr(yk,j)+rr(i,k,J)) *H1('k, J) -
(rr(i-1,k,3)+rr(i, k,3j))*H1(i ,k,3))+

mrdy*0.5* ((rr(i,k,)+rr(i,k,j))*H2(i,k,) -
(rr (i, k,j-1)+rr(i, k,3))*H2(i,k,5))-

msft(i,j)*(Hlavg(i,k+1,j)-Hlavg(i,k,j)+
H2avg(i,k+1,]j)-H2avg(i,k,])

) /dzetaw (k)

2R 2R R R R R

ENDDO
ENDDO
ENDDO

Distributed Memory Communications

(module diffusion.F)
SUBROUTINE horizontal diffusion s (tendency, rr, var,

DO j = jts,jte

DO k = kts, ktf

DO i = its,ite
mrdx=msft (i, j) *rdx
mrdy=msft(i,j) *rdy

tendency (i,k, j)Ftendeng# (i,k, J) - &
(mrdx*0.5* ((rr(yk,j)+rr(i,k,j)) *H1 (yk,3) 5 &
(rr('k,J)+rr(i,k,3))*H1 (1 ,k,] &
mrdy*0.5* ((rr (i, k,)+rr(i,k,j))*H2(1i,k,) - &
(rr (i, k,)+rr(i,k,j))*H2(i,k,j))- &
msft(i,j) * (Hlavg(i,k+1l,j)-Hlavg(i,k,j)+ &
H2avg(i,k+1,]j)-H2avg(i,k,]) &
) /dzetaw (k) &
)
ENDDO
ENDDO

ENDDO

APPLICATION

SYSTEM

HARDWARE

 Halo updates

memory on one processor

Distributed Memory MPI
Communications

memory on neighboring processor

APPLICATION

Distributed Memory (MPI)

SYSTEM

Communications

HARDWARE

 Halo updates
Periodic] I ot

« Parallel transposes
* Nesting scatters/gathers

Distributed Memory (MPI)

Communications

HARDWARE

 Halo updates . . .
 Periodic boundary updates | ¢ . . .)

« Parallel transposes

Average Daily Total rainfall (mm) - March 1997

* Nesting scatters/gathers

36km Domain _ R __36km Simulation

Distributed Memory (MPI)

Communications

HARDWARE

 Halo updates
* Periodic boundary updates
« Parallel transposes

« Nesting scatters/gathers

all y on all z on all x on
patch patch patch

Distributed Memory (MPI)

Communications

HARDWARE

Halo updates

Periodic boundary updates
Parallel transposes
Nesting scatters/gathers

COARSE
Ross Island
6.66 km

WRF Model Layer Interface

SUBROUTINE driver for some physics suite (

ISOMP DO PARALLEL
DO ij = 1, numtiles
its = 1i_start(i]) ; ite = i_end(i])
jts = j start(ij) ; Jjte = j end(ij)
CALL model subroutine(argl, arg2, ..
ids , 1de , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte)
END DO

END SUBROUTINE

WRF Model Layer Interface

template for model layver subroutine

SUBROUTINE model subroutine (&

argl, arg2, arg3, .. , argn, &

ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (State and Il) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: argl,
REAL, DIMENSION (ims:ime, jms:jme) :: arg’,

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: locl,

WRF Model Layer Interface

template for model layver subroutine

! Executable code; loops run over tile
! dimensions
DO j = jts, MIN(jte, jde-1)
DO k = kts, kte
DO i = its, MIN(ite,bide-1)
locl(i,k,j) = argl(i,k,]j) + ..
END DO
END DO
END DO

template for model layer subroutine

SUBROUTINE model (&

ids, ide,
ims, ime,
its, ite, jts, jte, kts, kte

jds,

IMPLICIT NONE

! Define Arguments (S and I1l) data
REAL, DIMENSION (ims:ime, kms:kme, jms:jme)
REAL, DIMENSION (ims:ime, jms: jme)

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte)

! Executable code; loops run over tile

! dimensions

DO j = (jts,jds), MIN(jte, jde-1)
DO k_=

» Domain dims
! Memory dims
! Tile dims

argl,
arg’,

Domain dimensions

Size of logical domain

Used for bdy tests, etc.

ids

logical domain

template for model layer subroutine

SUBROUTINE model (&
argl, arg2, arg3, .. , argn,

Memory dims
! Tile dims

ims, ime,

&

& ! Domain dims
&)

)

IMPLICIT NONE

! Define Argumen and Il) data

Domain dimensions

e Size of logical domain
e Used for bdy tests, etc.

Memory dimensions

e Used to dimension dummy
arguments

e Do not use for local arrays

s jde
la) LD]
B S |
(IR e
Jjme
> 5/
logical patch
: : — jms
ims | local array S ime
X 7 Yy v §\w -
B\ {/ l 4 .1_ '0\. *‘)._
v {5 \'4 ’ \-; :‘, L O
J Jan 'L jds

REAL, DIMENSI (ims:ime, kms:kme, jms: jme) argl,
REAL, DIMENSIT (ims:ime, jms: jme) arg7,
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) locl,
! Executable code; loops run over tile g
! dimensions : 5}ﬁ
DO j = MAX(jts,jds), MIN(jte, jde-1)
DO k = kts, kte TR,
DO i = MAX(its,ids), MIN(ite,ide-1)
locl(i,k,j) = argl(i,k,j) + .. f\‘yai
END DO {0
END DO ‘i; N
END DO
.‘},]
ids

logical domain ide

template for model layer subroutine

SUBROUTINE model (&
argl, arg2, arg3, .. , argn,
ids, ide, jds, jde, kds, kde,
ims, ime, jms, jme, kms, kme,
its, ite, jts, jte, kts, kte

Domain dims
Memory dims
Tile dims

" T L I "<]

IMPLICIT NONE

! Define Arguments (S and I1l) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: argl,
REAL, DIMENSION (ims:ime, jms: jme) :: arg’,

! Define Local Data (I2)
REAL, DIMENSIo@ite ,kts:kte, jts: @ locl,

! Executable code; loops run over tile

! dimension
(jts,jds), MIN(jte, jde-1)

DO kts, kte
DO™4 MAX (its,ids), MIN(ite,id
locl (i,k; =K + ..
END DO
END DO
END DO

Domain dimensions

e Size of logical domain

e Used for bdy tests, etc.
Memory dimensions

e Used to dimension dummy
arguments

e Do not use for local arrays
Tile dimensions

e Local loop ranges

e Local array dimensions

o'\ &y
N o,)
a « e
— = jme
5 (f
Jjte
n Jts
its ite
logical patch
T Jjms
| local array [~ "‘»\ ime
7 \ /ﬁ. A b L ,r,“ «“ﬁ
$a, (: ‘\‘] ™
; vON 'S
.f’ L "V jds

ids

logical domain ide

template for model layer subroutine

SUBROUTINE model (&
argl, arg2, arg3, .. , argn,
ids, ide, jds, jde, kds, kde,
ims, ime, jms, jme, kms, kme,
its, ite, jts, jte, kts, kte

Domain dims
Memory dims
Tile dims

" T L I "<]

IMPLICIT NONE

! Define Arguments (S and I1l) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: argl,
REAL, DIMENSION (ims:ime, jms: jme) :: arg’,

! Define Local Data (I2)
REAL, DIMENSIO@ite ,kts:kte,jts: JB locl,

! Executable code; loops run over tile
! dimension
(jt,jds) , MIN(jte,jde-1)

DO kts, kte
DO™4 MAX (its,ids), MIN(ite,id
locl (i,k; =K + ..
END DO
END DO
END DO

Patch dimensions

e Start and end indices of local
distributed memory subdomain

Available from mediation layer
(solve) and driver layer; not usually
needed or used at model layer

ids

Domain dimensions

Size of logical domain
Used for bdy tests, etc.

Memory dimensions

Used to dimension dummy
arguments

Do not use for local arrays

Tile dimensions

Local loop ranges
Local array dimensions

logical domain

How OpenMP and MPI Fit

WRF Domain Decomposition

As you increase the number of total MPI tasks, you reduce the
amount of work inside of each MPI task

The amount of time to process communication between MPI tasks
tends to be af best constant

As more MPI tasks are involved, more contention for hardware
resources due to communication is likely

As the computation time gets smaller compared to the
communications time, parallel efficiency suffers

APPLICATION

Application: WRF

HARDWARE

* WRF can be run serially or as a parallel job

* WRF uses domain decomposition to divide total amount of
work over parallel processes

APPLICATION Parallelism in WRF: Multi-level Decomposition

SYSTEM

HARDWARE

» Single version of code for efficient execution on:
— Distributed-memory
— Shared-memory (SMP)
— Clusters of SMPs
— Vector and microprocessors

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain allocated to a distributed memory
node, this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memaory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory
parallelism is over tiles within patches

APPLICATION

SYSTEM

lardware: The Computer

HARDWARE

« The ‘N in NWP
* Components
— Processor
* A program counter
* Arithmetic unit(s)
* Some scratch space (registers)

* Circuitry to store/retrieve from memory device
* (ache

— Memory
— Secondary storage
— Peripherals

* The implementation has been continually refined, but the
basic idea hasn’ t changed much

Hardware has not changed

much...

HARDWARE

A computer in 1960

b-way superscalar
36-bit floating point precision
~144 Kbytes

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

Dual core, 2.6 GHz chip
64-bit floating point precision
20MB L3

Sandy Bridge ~5,000,000,000 flop/s
48 12km WRF CONUS in 26 Hours

APPLICATION

...how we use It has

HARDWARE

* Fundamentally, processors haven't changed much since 1960
* Quantitatively, they haven't improved nearly enough

— 100,000x increase in peak speed

— 100,000x increase in memory size
* We make up the difference with parallelism

— Ganging multiple processors together to achieve 10''-12flop/second
— Aggregate available memories of 102 bytes

~1,000,000,000,000 flop/s ~2500 procs
48-h, 12-km WRF CONUS in under 15 minutes

Gflop/second

6000

5000 -

4000

w
o
o
o

2000 -

1000

1024 2048

—e—|ntel Xeon 5560 (4 core)
—=—Cray XTS5

—+—|BM Power6
~=—Sun/AMD (Ranger)

140

5,140~ 120

- 100

0
o

(o)
o

—=—Intel Xeon 5670 (6 core)

- 40

20

-0

3072 4096 5120 6144 7168 8192 9216

Number of cores

paads uonenwis

Strong vs Weak Scaling

WRF 3.7 Medium Benchmark: Intel

Chart Area . .
Model Simulation Speed vs MPI Core Count
400
¢
350
¢
300 >
250 ®
: 4
g 200 e
: $
150
) ~
100 <&
@
&
50 . ‘
<o
0 !
0 20 40 &0 80 100 120 140

Total Yellowstone Cores

Simulation Speed

WRF 3.7 Medium Benchmark: Intel
Model Simulation Speed vs MPI Core Count

1600
1400

1200

2
©

g

® ®e

200

© OO

0 200 400 600 800 1000 1200
Total Yellowstone Cores

1.2|l

‘Chart Area

1

0.8
z N
: ™
i 0.6 \h\ @ Seriesl

Linear (Series1)

: s

0.4

0.2

6
Total Core Count 24(n-1)

10

O wefoe 00002 20-21 120008

— -
Hurricane Sandy - :q_—-'

example -‘,

40 km 50x50

Decomposed 4 cores
(1x4, 4x1)

4 km 500x500

Decomposed 400
cores (16x25, 8x50)

035

03

o o
[o N
i - o

Elapsed Time per Integration Step (s)

o
-

£

e

0.05

’.Al‘

25x25 Patch Size, 1x4, 4x1, 16x25, 8x50

g S Rt L A RS AU -ffs"- LS

g
{

4!
TR LES

i1

71
106

141

176
211
246
281

316
351

421
456

431

526

561

596

631

701

736
771

241

876
911

T A0 km 1xd
——40 km 4x1
04 km 16x25
— 04 km 8x50

035

03

0.25

0.2

Elapsed Time per Timestep (s)

01

0.05

W&MM&L’MJW’AuWIh
MMM

SET RS : ek sy
AYREAIF R g gy priyashet 4n ey

WRF Timing: 40 vs 4 km

I

|

l

141 ‘ 1
M T L

35

103
137
171

205

273

307

341

375

443

a7z
511

545

579
613

647

681

715
749

783
817
851

919
953

— 40 km 1x4
— 40 km 4x1
04 km 16x25
04 km 8x50
40 km 1x16
04 km 16x100

Choosing Domains

January 2000 Benchmark — 1 task:

ZAvA1

January 2000 Benchmark — 2

taclre: 7Av21

January 2000 Benchmark — 4

taclre: RA7v21

January 2000 Benchmark — 8

taclre- RA7v1A

January 2000 Benchmark — 16

taclcre- 1QVv1A

January 2000 Benchmark — 32

ftaclre- 10vQ

January 2000 Benchmark — 64

taclre- 1N\\VvQ

Choosing Computational Domains

 What does it mean to choose an appropriate
computational domain?

* For the WRF model to run correctly and vield
physically meaningful results, a geographic
domain must be selected that allows the
model to the necessary information to
develop the simulation.

Choosing Computational Domains

 What does it mean to choose an appropriate
computational domain?

e Similarly, the computationally invariant
aspects of the domain layout are important.
For the same physics options and domain size,
a simulation over the US vs Europe take about
the same amount of time.

Choosing Computational Domains

 What does it mean to choose an appropriate
computational domain?

* The computational domain is concerned with
numbers of grid cells and the mapping of
those cells onto processors.

Choosing Computational Domains

 What does it mean to choose an appropriate
computational domain?

* The WRF model by default has a simple
algorithm to divvy up the domain into patch
sized pieces.

WRF Domain Decomposition

The WRF model decomposes domains horizontally

For n MPI tasks, the two nearest factors (n=k * m)are selected;
the larger is used to decompose the y-direction, the smaller is used
to decomposed the x-direction

Users may choose a preferred decomposition (nproc_x, nproc_y)

Prime numbers and composites with large prime factors are usually
to be avoided

The behavior of 132 vs 131, and 200 vs 202 are quite different

There once was a machine next to Wal-Mart
Which before the recabling, would fall apart
Day after day
| always seem to say
Have this job finish ‘ere this life | depart

Samuel Coleridge
Rime of the Ancient Modeler

HOW many
HOW tOo use

How to choose

Just How Many Cores Do | Need

The WRF model timing is sensitive to the

selection of model options and various domain
configurations.

For a fixed grid size (km) and number of grid
cells, the choice of microphysics and radiation
impact the model run-time.

For non-chemistry runs and for non-bin MP
runs, the WRF model is not a memory hog.

Horizontal domain decomposition is used.

Just How Many Cores Do | Need

e Assume three different domains:
A
1000x1000

Just How Many Cores Do | Need

e Assume three different domains:
A B
1000x1000 2000x2000

Just How Many Cores Do | Need

e Assume three different domains:
A B C
1000x1000 2000x2000 3000x3000

Just How Many Cores Do | Need

* If domain A fits on a n cores, then domains B
and C fit on 4n and 9n cores, respectively

A B C

Just How Many Cores Do | Need

 The amount of wall-clock time for domain B
(using 4n cores) ~= domain C (using 9n cores)

A B C

Just How Many Cores Do | Need

* The larger the decomposed sub-domain, the
more efficiently it uses the core (more work
with similar-ish amounts of communication).

Just How Many Cores Do | Need

* Scaling a WRF job is straightforward.

e |f 2 3000x2000 domain is the desired domain
size of the eventual WRF simulation ...

— 600 (600=30x20) 100x100 sub-domains could be
manufactured

— Short timings on a 200x200 domain (four sub-
domains of 100x100) would yield similar
performance characteristics

Just How Many Cores Do | Need

 WRF default decompositions take the two
closest factors.

— 144 total cores is a 12x12 core set up, not 72x2
* Be careful with core counts with accidentally
large prime factors.

— 128 cores using 6 1/0 processors gives 122 total
computational cores, decomposing as 61x2

* Decomposed domains should be larger than
10 cells on a side, and larger still for
performance.

Nesting

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s

D1

D2

D3

D4

D5

D2

D3 D3

D4 D4

D5 D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s

) 1

2

D2 D2
D3 D3 D3 69798
D4 D4 D4 9,10,11
D5 D5 D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s
1

2
@/ 3,4,5
D3 D3 D3 69798
D4 D4 D4 9,10,11
D5 D5 D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s

674

D4 D4 D4 9,10,11

D5 D5 D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s

@
566
e

D5 D5 D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration 1s

D1

D2

%@Q
(&

O
S

e
BHE
\

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

3,4,5
6,7,8
9,10,11

N

12

13,14,15
16,17,18
19,20,21

22
23,24,25
26,27,28
29,30,31

I

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

N

3,4,5
6,7,8
9,10,11

>>>

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

N

3,4,5
6,7,8
9,10,11

=2

I
I

I

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

3,4,5
6,7,8
9,10,11

I
I

il

Nesting Suggestions — CG Size

The size of the nested domain may need to be
chosen with computing performance in mind.

Assuming a 3:1 ratio and the same number of grid
cells 1n the parent and nest domains, the fine grid
will require 3x as many time steps to keep pace
with the coarse domain.

A simple nested domain forecast is approximately
4x the cost of just the coarse domain.

Don’ t be cheap on the coarse grid, doubling the
CG points results 1n only a 25% nested forecast
time 1ncrease.

Nesting Suggestions — Cost

* Example: assume 3:1 nest ratio

If the nest has the same number of grid cells, then
the amount of CPU to do a single time step for a
coarse grid (CG) and a fine grid step (FG) 1s
approximately the same.

Since the fine grid (3:1 ratio) has 1/3 the grid
distance, 1t requires 1/3 the model time step.
Therefore, the FG requires 3x the CPU to catch up
with the CG domain.

Nesting Suggestions — Same Area

* Example: assume 3:1 nest ratio

If you try to cover the SAME area with a FG domain
as a CG domain, you need (ratio)”2 grid points.

With the associated FG time step ratio, you require a
(ratio)”"3.

With a 3:1 ratio, a FG domain covering the same
area as a CG domain requires 27x CPU.

Nesting Suggestions — Same Area

 Example: assume 10:1 nest ratio

To change your test case from 50-km resolution to a
finer 5-km resolution would be at least 1000x more
expensive.

Nesting Suggestions - Location

* The minimum distance
between the nest boundary
and the parent boundaryis [:
FOUR grid cells

 You should have a MUCH 2
arger buffer zone
e |tis not unreasonable to

have approximately 1/3 of
your coarse-grid domain
surrounding each side of

your nest domain /3 1/3 1/3

Nesting Suggestions — Inside Out

 Start with designing your inner-most domain. For
a traditional forecast, you want everything
important for that forecast to be entirely contained
inside the domain.

* Then start adding parent domains at a 3:1 or 5:1
ratio. A parent should not have a smaller size (in
grid points). Keep adding domains until the most
coarse WRF grid has no more than a 3:1 to 5:1
ratio to the external model (first guess) data.

Nesting Suggest

ions — Big CG

* Larger domains tend to be better than smaller

domains.
* A 60 m/s parcel moves at

resolution grid with 100x

have all of the upper-level

> 200 km/h. A 2-km
|00 grid points could
| 1nitial data swept out of

the domain within a coup!

e of hours.

Nesting Suggestions — CG dt

140°W

130°W

120°W

110°W

100°W

90°W 7o°W 60°W 45°W 30°W 15°W 0° 15°E

Map factors > 1.6

Nesting Suggestions — CG dt

* The most-coarse domain may have a geographic extent
that causes large map factors.

time step = 300 (BLOWS UP)
dx = 50000,16666,5555
grid id =1, , 2 ;3

parent id = 0, ’ ’

~
~
~

0 1 2
parent grid ratio =1 3 3
parent time step ratio =1 3 3

4 4 ’

Nesting Suggestions — CG dt

* Reducing the time step so that the coarse grid 1s stable
makes the model too expensive. 1.5x more

time step = 200 (STABLE, PRICEY)
dx = 50000,16666,5555
grid id =1, , 2 ;3

parent id = 0, ’ ’

~
~
~

0 1 2
parent grid ratio =1 3 3
parent time step ratio =1 3 3

’ 4 4

Nesting Suggestions — CG dt

* Only reduce the time step on the coarse grid, and keep the
fine grid time steps at their approx original values.

time step

dx

grid id

parent id
parent grid ratio
parent time step ratio

200 (STABLE, CHEAP)

50000,16666,5555
1, , 2 ;3
0, , 1 , 2
1, ;3 3
1 2 3

4 4 ’

Nesting Suggestions — CG dt

Original Safe BETTER
Domain Time Step (s) Time Step(s) Time Step (s)

Number

Domain 01 | 300 200 200
PARENT
Domain 02 | 100 66.6 100
CHILD
time step = 300 (UNSTABLE)

parent time step ratio = 1, , 3 ;3

Nesting Suggestions — CG dt

Domain
Number

Original
Time Step (s)

Safe

Time Step (s)

BETTER

Time Step (s)

Domain 01 | 300 200 200

PARENT

Domain 02 | 100 66.6 100

CHILD
time step = 200 (STABLE, PRICEY)
parent time step ratio = 1, , 3 ;3

Nesting Suggestions — CG dt

Domain
Number

Original
Time Step (s)

Safe

Time Step (s)

BETTER

Time Step (s)

Domain 01 | 300 200 200

PARENT

Domain 02 | 100 66.6 100

CHILD
time step = 200 (STABLE, CHEAP)
parent time step ratio = 1, , 2 , 3

Nesting Suggestions — CG dt

Model time step 1s always proportional to the time step of
the most coarse grid.

The coarse grid is the only grid impacted with large map
factors: dt (s) = 6*dx (km)

The nominal grid distance always needs to be scaled:
dt(s) = 6*dx(km) / MAX (map factor in domain)

Reducing the coarse grid time step does not significantly
reduce model performance if you can tweak the time step
ratio.

Nesting Suggestions — CG dt

* The take away:

* The time step ratio and grid distance ratio are not
necessarily 1dentical, and may used effectively when large
map factors in the coarse grid domain force a time step
reduction for stability.

* If map factors are causing stability troubles, 1t 1s usually
only the most coarse grid that 1s impacted since the fine
grid 1s usually in the middle of the domain.

Nesting Suggestions - Wrap Up

* Set up domain first to provide good valid forecast,
then deal with efficiency

« Selecting a set of domains with the reason “it is all
[can afford” gets you into trouble

* Numerically stable and computationally expedient
do not imply scientifically or physically valid

Talk #2: WRF Optimization Best Practices

* 1/0 (though mostly “O”)
— netcdf3 vs netcdf4 (HDF5 compression)
— PNETCDF
— Quilting
— io_form =102
— Run-time auxiliary streams
— Vertical interpolation
— Diagnostics
 Benchmarking
— How to
— What to avoid
— Available benchmarks
— Using and interpreting benchmark information

* Debugging

— real*4 vs real*8
— ./configure —d and -D

10

WRF 1/0O

By default WRF has netcdf (classic, small file format), binary (internal
one-off format), and grib1 formats available. For portability, netcdf
(io_form=2) is the favored default.

At compile time, users may request PNETCDF
— $PNETCDF points to bin lib dir for PNETCDF

— jo_form =11

Typically, PNETCDF is used in combination with WRF QUILTING.

nio_tasks_per_group = 0 => How many cores are used per group
for [0. Zero deactivates the option, “2” uses two MPI tasks per
group for 10

nio_groups = 1 => usually “one” group per stream (3 domains,
each with history and a restart: 6 nio_groups)

WRF 1/0O

 Streams (similar to Fortran units): pathways into and out of model

* (an be thought of as files, though that is a restriction

— History + auxiliary output streams (10 and 11 are reserved for
nudging)

— Input + auxiliary input streams (10 and 11 are reserved for
nudging)

— Restart, boundary, and a special DA in-out stream

— Currently, 24 total streams

— Use the large values and work down to stay away from “used”
— Non-chemistry: use history streams 13-22, 24

— Chemistry: use history streams 20, 21, 22, 24

WRF 1/0O

e Attributes of streams

— Variable set
* The set of WRF state variables that comprise one read or write on a stream
* Defined for a stream at compile time in Registry
— Format
* The format of the data outside the program (e.g. NetCDF), split
* Specified for a stream at run time in the namelist

WRF 1/0O

 Attributes of streams
— Additional namelist-controlled attributes of streams
 Dataset name
* Time interval between 1/0 operations on stream
* Starting, ending times for |/O (specified as intervals from start of run)

Example 1: Add output without
recompiling

e Edit the namelist.input file, the time_control namelist record
iofields filename = "myoutfields.txt” (MAXDOM)
io form auxhist24 2 (choose an available stream)
auxhist24 interval = 10 (MAXDOM, every 10 minutes)

* Place the fields that you want in the named text file
myoutfields. txt

+:h:24 :RAINC,RAINNC

* Where “+” means ADD this variable to the output stream, “h” is
the history stream, and “24” is the stream number

Data, data every where,
nor any drop to drink

Samuel Coleridge
Rime of the Ancient Modeler

e Output data more quickly
* Output data more smallly

e Output data more lessly

Example 1: Zap output without
recompiling

* Edit the namelist.input file, the time_control namelist record
iofields filename = "myoutfields.txt”

* Place the fields that you want in the named text file
myoutfields. txt

-:h:0:W,PB,P

* Where “-” means REMOVE this variable from the output
stream, “h” is the history stream, and “0” is the stream
number (standard WREF history file)

(De)Selecting Model Output Fields

* Several years ago John Michalakes provided a
simple run-time option to add and remove fields
from WRF streams

&time control
iofields filename = "myoutfields. txt”

/

-:h:0:W,PB,P

(De)Selecting Model Output Fields

e Particularly helpful when ncview shows:

(110)3d vars (182)4d vars

(De)Selecting Model Output Fields

 Removing half of the unwanted or never used
3d arrays cuts your file sizes in half

* Default values for “history” that are in the
Registry do not obligate users

CF Compliant-ish

If you output the WRF model data with a single
time period per file, ncview is able to recognize
the WRF projections.

&time_control x| Neview 2.1.1

. David W. Pierce 1 Aug 2011
frames per outfile =1, 1,

/

e OO0 '\ Set Options

73.35751, y=24.065N
01-10-24 00:00:00

Overlays:

© None
0.8 degree coastling
0.08 degree ¢\

» M Edit ? Delay: |

Linear Axes Range Bi-lin

O

O

@® USA states
C custom

oK 1o seiect custom overigy Bile

Stitching Model Output Together

* Yunheung Wang (CAPS) developed and Kevin
Manning improved a scheme that joins “split
data” back together

&time control
history interval s
io form history

/

150, 60, 60,
102

Stitching Model Output Together

* Running on 20 cores could produce the following
WRF model decomposition and output:

Stitching Model Output Together

 With large domains, model output can dominate
the total wall clock time

* With the “102” option, when running on 800
cores, there are 800 files

* Files get constructed with names such as
wrfout d01 2010-06-23 15:00:00 0000
wrfout d01 2010-06-23 15:00:00 0001

wrfout d01 2010-06-23 15:00:00 0799

Stitching Model Output Together

The only purpose is timing performance

Works well with multiple domains and when
restarts overlap with model output times

The joining program is DM parallel

For a 2000x2000x100 WSM6 domain, 2 minutes
per time period with 8 cores manufactured the
single file

Scripts exist to run the joining program
concurrently with WRF

Stitching Model Output Together

* Single file input:

Timing for processing wrfinput file
(stream 0) for domain 1:
320.15085 elapsed seconds

* Multiple file output:

Timing for Writing

wrfout dO01 2010-06-23 12:00:00 for
domain 1: 0.90883 elapsed
seconds

NETCDF4 Compression

* Huang Wei and Jianyu Liu have put in a simple
way to get impressive NETCDF4 compression
with WRF model output

* |f the user has NETCDF4 libraries that have
HDF5 compression included, then a single
“env” variable is all that is required

NETCDF4 Compression

* Prior torunning . /configqure ...

setenv NETCDF4 1
export NETCDF4=1

NETCDF4 Compression

This is fully supported in WRF 3.5 and beyond
File sizes tend to be about half of the original
size

The compression works well with fields which

contain similar values (such as near-zero
guantities for many of the hydrometeor fields)

YS NETCDF tools support this compression:
ncview, ncl, nco

NETCDF4 Compression

* |t takes time to “compress” data.

 500x500, 256 cores time to write model
output (s)

NETCDF3 NETCDF4

|O_FORM =2 25 45
IO_FORM =102 |0.35 0.65

* Usingio form=102, the extra time is

Diagnhostics

&time control
io form history =0

io _form_ auxhist23 = 2,

auxhist23 interval = 60, 30, 10,
frames per auxhist23 = 1, 1, 1,
auxhist23 outname = "PLEVS_ d<domain> <date>"
/

&diags

p_lev_diags =1

num press_ levels = 2

press_levels = 50000, 25000

Diagnhostics

&time control

io _form history =0
iofields filename = "field list dOl.txt”,
io_form_auxhist24 = 2
auxhist24 interval = 60, 30, 10,
frames per auxhist24 = 1, 1, 1,
auxhist24 outname = "SFC_d<domain> <date>"
/
&afwa
afwa diag opt =1, 1, 1,
/
File:

+:h:24:MU,RAINC,RAINNC,U10,V10,T2,Q2,XLAT, XLONG,AFWA_MSLP, REFL_10CM

Benchmarking

1.2|l

‘Chart Area

1

0.8
z N
: ™
i 0.6 \h\ @ Seriesl

Linear (Series1)

: s

0.4

0.2

6
Total Core Count 24(n-1)

10

Benchmarking

Revamping the existing benchmark files

Small one is 425x300, 12-km, 3-h: so suitable for
most desktop -> department-sized systems

Will provide restart, lateral boundary, and
namelist.input for all WRF releases: from 3.0.1.1
upto 3.7

Benchmarking

2001 Oct 24 0000 UTC init + 24-h simulation,
drop a restart

3-h forecast (72 s time step) gives 150 time
steps

No I/O counted in timing
For 1 through 1024 cores (by powers of 2)

Benchmarking

* Finding W I D E variation in timings, but a
definite slowing trend

e Ran 200 instantiations of each of 8 WRF model
releases

a0

79

70

65

60

55

50

45

40

Benchmarking

Time (s) to complete 425x300 3-h WRF Benchmark, by Released Version

v3,0,1.1

v3,1l

v3,2

LT |

w3, 4

v3,5

v3,6

w3, 7

Debugging

Debugging

What are simple recommendations for trying to
debug a problem in WRF?

The WRF build system allows the user to
configure the model to run with many compiler-
supplied error trapping systems activated.

./clean -a
./configure -D
This executable will run VERY slowly.

Debugging

What are simple recommendations for trying to
debug a problem in WRF?

Try to track down problems in big domains by
simplifying:

smaller domains

single processor

remove physics options sequentially

short forecasts through use of restart

Debugging

e When does NCAR want to be contacted?

 When a standard model set up fails, we want
to know.

e “Standard” is a recent release running with

reasonable settings, and typical input data
that we frequently run.

Debugging

When does NCAR NOT want

to be contacted?

A developer wrote code, and now the WRF

model fails when the option

is turned on.

A developer wrote code, and now the WRF

model fails even when the o

otion is turned off.

A developer wrote code, and there is just no way
the model failure could be because of the
ABSOLUTELY SOLID code written by the

developer.

Debugging

What are typical failure modes for WRF?

Bad initial conditions

The model simulation fails quickly (first few
time steps).

If the first time step is OK, look for
DRAMATICALLY bad fields, such as from a flag
value, not an actual physically meaningful
value.

Debugging

What are typical failure modes for WRF?

Bad initial conditions
Too many, too few vertical levels.

Poorly distributed vertical levels (let the real
program figure them out for one of your
tests).

Debugging

What are typical failure modes for WRF?

Bad initial conditions

If any (i,j) info is provided by the WRF model, use
a visual tool (ncview) to look at that location for
these fields: MU, U, V, T, PH, QVAPOR, W.

For 3d arrays, look completely top to bottom.

The masked fields may be problematic at the
initial time: TSLB, SMOIS, SEAICE, SST.

Debugging

What are typical failure modes for WRF?

Model is unstable early on
The CFL violations are reported for values > 2.
Values that large will kill the WRF simulation.

Early CFL problems MIGHT be alleviated with a
shorter time step.

Modify solve_em.F to force the RK and the
sound loop to have only one iteration to localize
the problem.

Debugging

What are typical failure modes for WRF?

Model is unstable early on
Again, early on, most troubles stem from the IC.

Regardless of the location of the failure message
(cumulus, radiation, land surface), review closely
the IC file.

The problem, for an early failure, is unlikely to
be due to a problem in the radiation scheme, for
example.

Debugging
What are typical failure modes for WRF?

Model is unstable later in the simulation

Usually, shortening the time step is not that helpful
(but any port in a storm).

Take care to notice if the reported CFL violations in
the rsl files are fatal, or just “business as usual” and the
model has recovered with vertical velocity damping.

Later-in-the-simulation failures are hard to solve.

Debugging
What are typical failure modes for WRF?

Model is unstable later in the simulation

Is the failure reproducible — on a re-run does the WRF
model fail exactly the same in exactly the same place.

Reproducible failures allow a restart file to get a short
simulation to test.

If the restarted simulation also successfully fails, then
a recompiled code with error trapping activated may
help out.

Debugging

 What are typical failure modes for WRF?

* Modelis unstable later in the simulation

* What is physically happening? Is the sun
coming up or setting? Is this a land/water
boundary? Isice an issue at the grid cell?
What is the first field impacted?

Debugging

What are tools that NCAR WRF user support uses
for debugging the model when it fails?

With netcdf output, a number of simple visual
tools are available: ncview, ncl.

If the model shows significant sensitivity to
physical parameterization settings, ncdiff for a
few variables might be helpful.

Variables to particularly consider: MU, U, V, W, T,
PH, QVAPOR, TSLB, SMOIS

Debugging

What are tools that NCAR WRF user support uses
for debugging the model when it fails?

Running with different compilers (or even
different versions) is sometimes helpful.

When a failure occurs:

Does the model work with different ICs
Same IC source, different day

Different physics

Debugging

What are tools that NCAR WRF user support
uses for debugging the model when it fails?

Floating precision can sometimes be helpful.
Jclean —a
.Jconfigure —r8 (works Intel, PGI, GNU)

