
WRF	Compu*ng	Best	Prac*ces	

Adding	or	modifying	compilable	WRF	
source	code	

Adding	or	modifying	compilable	WRF	
source	code	

•  Does	WRF	care	about	free	vs	fixed	form?			

•  The	WRF	source	code	is	mostly	a	free-
formaCed	Fortran	code	base.			

•  The	configure.wrf	file	has	explicit	rules	for	the	
free	and	fixed	codes.		

•  The	WRF	build	system	assumes	that	all	of	user	
contributed	code	will	compile	as	free-
formaCed.	

Adding	or	modifying	compilable	WRF	
source	code	

•  Is	there	a	Fortran	standard	to	which	the	user	
should	adhere?	

•  There	are	a	few	Fortran	2003	capabili*es	
included,	and	most	recent	compilers	support	
these.	

•  Do	not	aCempt	to	u*lize	coarrays	or	other	more	
exo*c	addi*ons	to	the	Fortran	standard.	

•  Compilers	vary	in	there	support	for	newer	
capabili*es,	both	being	able	to	compile	them,	
and	to	use	them	efficiently.	

Adding	or	modifying	compilable	WRF	
source	code	

•  How	should	the	call	to	my	new	physics	
package	be	done?	

•  Look	in	the	specific	driver	for	examples	of	
exis*ng	calls.		For	example	phys/
module_radia*on_driver.F	

Adding	or	modifying	compilable	WRF	
source	code	

•  How	should	the	call	to	my	new	physics	package	
be	done?	

•  All	top	level	physics	rou*nes	are	called	with	a	3d	
block	of	data.			

•  18	dimensions	are	always	passed:	
•  	 I,	J,	K	dimensions	
•  	 domain,	memory,	and	computa*onal	sizes	
•  	 star*ng	and	ending	

Adding	or	modifying	compilable	WRF	
source	code	

•  How	should	the	call	to	my	new	physics	
package	be	done?	

•  CALL cal_cldfra1(CLDFRA,qv,qc,qi,qs, &
•  F_QV,F_QC,F_QI,F_QS,t,p, &
•  F_ICE_PHY,F_RAIN_PHY, &
•  ids,ide, jds,jde, kds,kde, &
•  ims,ime, jms,jme, kms,kme, &
•  its,ite, jts,jte, kts,kte)

Adding	or	modifying	compilable	WRF	
source	code	

•  Where	does	WRF	assume	that	the	values	inside	
of	the	physics	schemes	are	located?	

•  The	physics	schemes	are	column	oriented,	no	
communica*ons	are	required	top	to	boCom.	

•  The	values	are	located	at	mass	points.	
•  Some	variables	are	located	on	full	eta	level	
(usually	denoted	with	the	cryp*c	conven*on	
“8w”),	but	most	3d	variables	are	located	on	the	
computa*onal	half	layer	loca*ons.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	a	new	variable	was	added	in	the	Registry,	at	
what	point	does	this	get	manually	introduced	in	
the	subrou*ne	calling	tree?	

•  All	variables	in	the	Registry	(state	+	namelist	
op*ons)	are	in	the	derived	data	structure	“grid”.	

•  When	“grid”	is	available,	the	new	variable	does	
not	need	to	be	dereferenced	from	the	structure.	

•  The	calls	to	the	drivers	in	
module_first_rk_step_part1.F	exhibit	the	
required	dereferencing.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	a	new	variable	was	added	in	the	Registry,	at	
what	point	does	this	get	manually	introduced	
in	the	subrou*ne	calling	tree?	

•  CALL radiation_driver(&
•  ACFRCV=grid%acfrcv , &
•  ACFRST=grid%acfrst , &
•  ALBEDO=grid%albedo , &

Adding	or	modifying	compilable	WRF	
source	code	

•  If	a	new	variable	was	added	in	the	Registry,	at	
what	point	does	this	get	manually	introduced	in	
the	subrou*ne	calling	tree?	

•  The	call	to	the	specific	driver	needs	to	have	the	
new	variable	explicitly	passed	in	from	
module_first_rk_step_part1.F	(or	from	the	solver	
for	the	microphysics	rou*nes).	

•  User	modifica*ons	are	then	required	in	all	
deeper	rou*nes.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	is	a	new	variable	that	needs	to	be	
communicated,	how	is	that	set	up	in	WRF?	

•  All	communica*ons	in	WRF	are	a	combina*on	
of	two	items:	manual	inclusion	of	compilable	
source	code,	and	manual	inclusion	of	
communica*ons	informa*on	in	the	Registry.	

•  The	source	modifica*ons	“cpp	include”	a	file	
into	the	source	prior	to	compila*on.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	is	a	new	variable	that	needs	to	be	
communicated,	how	is	that	set	up	in	WRF?	

•  The	developer	may	choose	to	communicate	
the	variables	immediately	a`er	the	
computa*on	is	performed	to	manufacture	the	
new	variable,	or	wait	un*l	the	new	variable’s	
halo	is	needed.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	is	a	new	variable	that	needs	to	be	
communicated,	how	is	that	set	up	in	WRF?	

•  #ifdef DM_PARALLEL
•  # include
"PERIOD_BDY_EM_A.inc"

•  #endif

Adding	or	modifying	compilable	WRF	
source	code	

•  How	do	you	access	a	par*cular	hydrometeor	
from	the	4d	array	moist?	

•  The	name	associated	with	the	variable	defined	
in	the	Registry	is	used	to	construct	a	Fortran	
PARAMETER	value.			

•  This	integer	index	should	always	be	used	to	
refer	to	the	par*cular	3d	array.	

Adding	or	modifying	compilable	WRF	
source	code	

•  How	do	you	access	a	par*cular	hydrometeor	
from	the	4d	array	moist?	

•  Registry,	first	few	parts	of	the	QVAPOR	line:	
•  state real qv ikjftb
moist

•  Source	code:	
•  qvf = 1. +
rvovrd*moist(i,k,j,P_QV)

Adding	or	modifying	compilable	WRF	
source	code	

•  How	do	you	access	a	par*cular	hydrometeor	
from	the	4d	array	moist?	

•  Loops	over	the	4d	arrays	should	always	begin	and	
end	with	the	WRF	specific	star*ng	values:	

•  DO im = PARAM_FIRST_SCALAR,
num_3d_m

•  qtot = qtot + moist(i,k,j,im)
•  ENDDO

Adding	or	modifying	compilable	WRF	
source	code	

•  How	do	you	access	a	par*cular	hydrometeor	
from	the	4d	array	moist?	

•  These	automa*cally	generated	values	are	
inside	module_state_descrip*on.	

•  When	these	generated	indexes	are	required	
for	new	code,	USE	module_state_descrip*on.	

Adding	or	modifying	compilable	WRF	
source	code	

•  With	modern	Fortran,	how	do	I	get	informa*on	
from	the	module?	

•  A	“use	associa*on”	is	employed	in	WRF.	
•  To	restrict	the	number	of	symbol	names	that	are	
shared,	the	WRF	code	tends	to	restrict	the	
variables	requested	with	the	ONLY	clause.	

•  Mostly	this	“ONLY	clause”	is	added	to	keep	
compilers	from	complaining	about	source	code	
being	“too	complex”	when	the	used	module	is	
large.	

Adding	or	modifying	compilable	WRF	
source	code	

•  With	modern	Fortran,	how	do	I	get	
informa*on	from	the	module?	

•  USE module_configure, ONLY : grid_config_rec_type
•  USE module_driver_constants
•  USE module_machine
•  USE module_tiles, ONLY : set_tiles

Adding	or	modifying	compilable	WRF	
source	code	

•  With	modern	Fortran,	how	do	I	get	
informa*on	from	the	module?	

•  Typically	when	adding	in	communica*ons	or	
new	physics	packages,	the	USE	statements	
need	to	be	amended	to	include	the	new	
Registry	informa*on.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	are	known	restric*ons	for	packages,	
how	can	that	informa*on	be	used	at	model	
ini*aliza*on?	

•  There	are	two	mechanisms	in	WRF	for	
handling	error	checking	for	the	physics	
schemes:		

• 	 phys/module_physics_init.F	
• 	 share/module_check_a_mundo.F	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	are	known	restric*ons	for	packages,	how	
can	that	informa*on	be	used	at	model	
ini*aliza*on?	

•  The	tests	in	physics_init	are	more	aligned	with	
modifying	2d	and	3d	arrays	depending	on	the	
values	of	namelist	sejngs	or	other	2d	and	3d	
arrays.		Ini*aliza*ons	for	each	domain	take	place.	

•  To	avoid	OpenMP	race	condi*ons,	this	is	a	much	
beCer	way	to	fix	zeroed-out	variables.	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	there	are	known	restric*ons	for	packages,	
how	can	that	informa*on	be	used	at	model	
ini*aliza*on?	

•  The	purpose	for	check_a_mundo	is	to	stop	
incompa*ble	namelist	op*ons.		If	a	user	
knows	that	a	certain	scheme	is	only	set	up	to	
work	with	one	type	of	PBL,	then	that	needs	to	
be	included.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	does	the	WRF	model	mean	by	“restart”,	
and	how	does	it	impact	a	developer?	

•  A	restart	in	WRF	allows	a	model	simula*on	to	
con*nue	from	an	interrupted	state,	AND	to	
produce	bit-wise	iden*cal	results	to	those	
generated	from	a	non-interrupted	simula*on.	

•  Developers	need	to	provide	informa*on	as	to	
which	variables	need	to	be	saved	for	a	restart	
run.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	does	the	WRF	model	mean	by	“restart”,	and	how	
does	it	impact	a	developer?	

•  The	restart	variables	are	explicitly	listed	in	the	Registry.	

•  state real rimi ikj misc \
•  1 - irh \
•  "RIMI" "riming intensity" \
"fraction"

Adding	or	modifying	compilable	WRF	
source	code	

•  What	does	the	WRF	model	mean	by	“restart”,	and	how	
does	it	impact	a	developer?	

•  The	physics_init	rou*ne	needs	to	avoid	resejng	
restarted	variables,	which	requires	user	modifica*on.	

•  IF(.not.restart)THEN
•  IF(PRESENT(rliq)) THEN
•  rliq(:,:) = 0.0
•  ENDIF
•  ENDIF

Adding	or	modifying	compilable	WRF	
source	code	

•  Will	the	WRF	community	sing	my	praises	if	I,	
as	a	developer,	include	lots	of	inline	
documenta*on?	

• YES!	

Adding	or	modifying	compilable	WRF	
source	code	

•  Is	there	a	mechanism	to	output	the	namelist	
op*ons	that	are	being	developed?	

•  The	file	share/output_wrf.F	handles	the	
metadata	output:	

•  ibuf(1) = config_flags%e_we - config_flags%s_we + 1
•  CALL wrf_put_dom_ti_integer (fid , &
•  'WEST-EAST_GRID_DIMENSION' , ibuf , 1 , ierr)

Adding	or	modifying	compilable	WRF	
source	code	

•  Is	there	a	mechanism	to	output	the	namelist	
op*ons	that	are	being	developed?	

•  Rou*nes	exist	to	output	integer,	real,	logical,	
and	character	strings.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	WRF	infrastructure	exists	to	make	
coding	easier	for	such	processing	as	global	
sums,	global	extrema	and	loca*ons	of	
extrema?	

•  There	are	a	few	rou*nes	in	WRF	that	handle	
these	types	of	capabili*es	for	most	tradi*onal	
data	types	(real,	double,	integer).	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	WRF	infrastructure	exists	to	make	
coding	easier	for	such	processing	as	global	
sums,	global	extrema	and	loca*ons	of	
extrema?	

•  There	are	a	few	rou*nes	in	WRF	that	handle	
these	types	of	capabili*es	for	most	tradi*onal	
data	types	(real,	double,	integer).	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	WRF	infrastructure	exists	to	make	coding	
easier	for	such	processing	as	global	sums,	global	
extrema	and	loca*ons	of	extrema?	

•  lat1 = wrf_dm_min_real (lat1)

•  Please	see	example	#3	for	a	more	complete	list	
and	examples	of	usage:		

•  hCp://www2.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Registry_2.pdf	

Adding	or	modifying	compilable	WRF	
source	code	

•  How	about	ini*aliza*ons	that	can	only	be	
handled	on	the	master	node?	

•  Even	for	serially-built	code,	the	following	is	
defined:	

•  IF (wrf_dm_on_monitor()) THEN

Adding	or	modifying	compilable	WRF	
source	code	

•  How	does	info	get	from	the	master	node	to	
the	other	processors?	

•  Again	for	na*ve	data	types,	a	variable	(and	the	
number	of	words)	can	be	broadcast	to	all	of	
the	processors	from	the	master.	

•  CALL wrf_dm_bcast_integer(nt,1)

Adding	or	modifying	compilable	WRF	
source	code	

•  If	informa*on	is	in	the	namelist,	how	is	it	
accessed	inside	the	code?	

•  There	are	three	methods	to	get	namelist	
informa*on:	

• 	 grid%	
• 	 config_flags%	
• 	 subrou*ne	calls	

Adding	or	modifying	compilable	WRF	
source	code	

•  If	informa*on	is	in	the	namelist,	how	is	it	
accessed	inside	the	code?	

•  Any	*me	the	“grid”	structure	is	present,	the	
namelist	op*on	may	be	dereferenced	as	an	
exis*ng	field	in	the	derived	structure:	

•  p_top_requested = grid%p_top_requested

Adding	or	modifying	compilable	WRF	
source	code	

•  If	informa*on	is	in	the	namelist,	how	is	it	
accessed	inside	the	code?	

•  Similarly,	the	derived	structure	config_flags	
holds	the	namelist	informa*on	for	the	current	
grid	being	processed:	

•  IF (config_flags%spec_bdy_width .GT. &
•  flag_excluded_middle) THEN

Adding	or	modifying	compilable	WRF	
source	code	

•  If	informa*on	is	in	the	namelist,	how	is	it	
accessed	inside	the	code?	

•  The	WRF	code	automa*cally	builds	two	
subrou*nes	for	each	namelist	variable,	a	“get”	
and	a	“set”	subrou*ne.		Mostly,	developers	are	
interested	in	the	“get”	op*on.		Argument	#1	is	
which	domain,	and	argument	#2	is	the	local	
returned	value.	

•  CALL nl_get_base_pres (1 , p00)

Adding	or	modifying	compilable	WRF	
source	code	

•  What	are	the	available	op*ons	for	outpujng	
debug	print	informa*on?	

•  Because	not	all	print	buffers	are	guaranteed	
to	be	flushed	on	an	error	exit,	it	is	beCer	to	
use	WRF	supplied	print-out	func*ons.	

•  Also,	use	the	WRF	provided	fatal	error	
func*on	instead	of	a	Fortran	STOP	statement.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	are	the	available	op*ons	for	outpujng	
debug	print	informa*on?	

•  CALL wrf_debug (200 , ' call end of solve_em')
•  CALL wrf_message('ndown: using namelist

constants')
•  CALL wrf_error_fatal(’Use km_opt=2 with

sfs_opt=2’)

Adding	or	modifying	compilable	WRF	
source	code	

•  If	a	developer	wants	an	event	to	occur	every	so	
o`en,	how	is	that	accomplished?	

•  Be	wary	of	a	simple		
•  MOD	(current_*me	,	some_interval)	==	0	
•  set	up.		For	large	values	of	current	*me,	the	
statement	may	eventually	never	be	true	again.		
For	a	fixed	*me	step,	the	integer	number	of	*me	
steps	might	be	preferable:	

•  IF (mod(itimestep,STEPFG) .eq. 0) THEN

Adding	or	modifying	compilable	WRF	
source	code	

•  What	is	supposed	to	happen	with	OPTIONAL	
variables	and	the	CPP	ifdef’ing?	

•  First,	this	is	required	due	to	the	two	different	
dynamical	cores	inside	of	WRF,	and	even	for	ARW	
the	DA	and	Chem	codes	do	not	need	all	variables.	
To	allow	the	physics	schemes	to	work	with	both	
cores	(and	the	Chem	and	DA	op*ons),	some	
variables	are	considered	op*onal	because	they	
are	not	present	at	all	*mes.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	is	supposed	to	happen	with	OPTIONAL	
variables	and	the	CPP	ifdef’ing?	

•  For	a	new	scheme,	if	only	a	“few”	variables	are	to	
added	to	both	cores,	it	is	reasonable	to	add	the	
variables	to	both	the	ARW	and	NMM	Registry	
files	(similarly,	the	DA	and	Chem	Registry	files).	

•  If	LOTS	of	variables	are	to	be	added,	it	is	beCer	to	
go	the	OPTIONAL	variable	route.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	is	supposed	to	happen	with	OPTIONAL	
variables	and	the	CPP	ifdef’ing?	

•  The	variables	that	are	only	required	for	one	of	
the	build	op*ons	are	ifdef’ed	out	in	the	calling	
rou*ne	(for	example	the	first_rk_step_part1	file		

•  #ifdef WRF_CHEM
•  & ,CHEM=chem,chem_opt=config_flags%chem_opt
•  #endif

Adding	or	modifying	compilable	WRF	
source	code	

•  What	is	supposed	to	happen	with	OPTIONAL	
variables	and	the	CPP	ifdef’ing?	

•  Always	add	new	variables	to	a	Registry	
package	to	minimize	the	model’s	memory	
footprint.		The	variables	are	allocated,	but	
only	with	a	(1,1,1)	size.	

•  When	using	OPTIONAL	arguments,	always	test	
if	the	variable	is	PRESENT	before	using.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	is	supposed	to	happen	with	OPTIONAL	
variables	and	the	CPP	ifdef’ing?	

•  IF (PRESENT(rainshv)) THEN	
•  DO j=j_start(ij),j_end(ij)
•  DO i=i_start(ij),i_end(ij)
•  RAIN(i,j) = RAIN(i,j) +
RAINSHV(i,j)

•  ENDDO
•  ENDDO
•  END IF

Adding	or	modifying	compilable	WRF	
source	code	

•  What	are	the	usual	ifdef	syntaxes	that	are	to	
be	used?	

•  To	avoid	the	situa*on	where	a	compile-*me	
op*on	is	set	to	zero	(where	the	intent	was	to	
turn	the	op*on	OFF),	the	WRF	ifdef’s	test	on	
the	number	“1”.	

Adding	or	modifying	compilable	WRF	
source	code	

•  What	are	the	#ifdef	syntaxes	that	are	to	be	
used?	

•  #if (DA_CORE == 1)

•  #if (WRF_CHEM == 1)

•  #if (NMM_CORE == 1)

•  #if (EM_CORE == 1)

Adding	or	modifying	compilable	WRF	
source	code	

•  What	type	of	communica*ons	are	allowed	
between	columns	in	the	physics	schemes?	

•  By	default,	the	physics	schemes	are	column	
oriented,	with	no	impact	permiCed	from	
neighbors.	

•  This	means	NO	horizontal	differences	or	
horizontal	averaging	inside	the	physics	
schemes.	

Adding	to	or	modifying	the	WRF	
Registry	

Adding	to	or	modifying	the	WRF	
Registry	

•  What	is	the	WRF	Registry?	

•  The	WRF	Registry	is	an	ac*ve	data	dic*onary.	
•  It	is	a	text-based	file	that	is	user-modifiable.	
•  Every	variable	used	with	I/O,	communica*ons,	
namelist	op*on	is	in	the	Registry.	

•  All	associa*ons	of	variables	with	physics	
schemes	are	handled	by	the	Registry.	

Adding	to	or	modifying	the	WRF	
Registry	

•  What	is	the	WRF	Registry?	

•  The	text-based	file	is	read	by	a	program.	
•  This	registry	program	manufactures	include	
files	that	are	CPP	#include’d	during	the	WRF	
build	process.	

•  More	than	300	thousand	lines	of	
automa*cally	generated	code	are	included	in	
the	WRF	source	code	via	the	registry	program.	

Adding	to	or	modifying	the	WRF	
Registry	

•  What	are	the	different	types	of	model	variables	
in	the	Registry?	

•  Most	users	are	concerned	with	the	gridded	data	
or	with	the	namelist	variables.		The	Registry	
handles	both	of	these.	

•  The	gridded	data	is	either	“state”	(available	
throughout	the	dura*on	of	the	simula*on)	or	the	
data	is	“i1”	(tendency	variables	that	pop	off	the	
stack	at	the	conclusion	of	each	*me	step).	

Adding	to	or	modifying	the	WRF	
Registry	

•  What	are	the	different	types	of	model	
variables	in	the	Registry?	

•  Please	see	for	more	informa*on	on	the	
Registry:	

•  www.mmm.ucar.edu/wrf/users/tutorial/201401/
WRF_Registry_1.pdf

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  There	are	mul*ple	streams	(think	of	these	as	
separate	unit	numbers)	for	input	and	output.	

•  Each	variable	may	be	in	zero	or	more	streams.	
•  The	WRF	naming	conven*on	for	the	streams:	
•  	 i	=>	input	
•  	 h	=>	history	
•  	 r	=>	restart	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	
•  #<Table> <Type> <Sym> <Dims>
•  state real LAT ij

•  #<Use> <NumTLev> <Stagger>
•  misc 1 -

•  # <IO>
•  i0123rh01{22}{23}du=(copy_fcnm)

•  #<DNAME> <DESCRIP> <UNITS>
•  "XLAT" "LATITUDE, SOUTH IS NEGATIVE" "degree_north"

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  For	input	and	history,	the	default	stream	
number	is	“0”.	

•  The	default	input	stream:	wrfinput_<domain>	
•  The	default	output	stream:	
wrfout_<domain>_<date>	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  A	stream	specifica*on	of	“ih”	assumes	the	
field	is	in	the	input	stream	and	will	be	output	
to	the	WRF	history	file.	The	numeral	zero	is	
assumed	present	if	there	are	no	numerals.	

•  Numerals	are	added	a`er	the	characters	“i”	or	
“h”	to	indicate	addi*onal	(nonstandard)	
streams	for	the	fields.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  Once	explicit	stream	numbers	are	specified,	
the	“zero”	stream	must	also	be	specifically	
requested,	as	in	i01.	

•  Streams	with	more	than	one	digit,	for	example	
stream	#14,	would	be	surrounded	by	“{}”,	as	
in	{14}	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  First	couple	entries	for	the	eta	levels:	
•  state real znu k dyn_em 1 -
irh

•  state real znw k dyn_em 1 Z
i0rh

•  Note	that	irh	and	i0rh	are	iden*cal	specifica*ons.

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  The	2-m	temperature	is	available	for	input	
from	real	(i0),	input	from	metgrid	(i1),	output	
to	the	default	history	file	(h0),	and	output	to	
an	auxiliary	stream	(h{23}):	

•  state real T2 ij misc 1 - i01rh0{23}

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  All	variables	involved	with	I/O	are	required	to	be	
state.

•  The	state	variables	may	be	real,	double,	integer,	
character,	or	logical.	

•  Variables	for	I/O	must	be	0d,	1d,	2d,	3d,	or	part	
of	a	known	4d	amalgama*on.	

•  Only	one	*me	slice	of	two-*me-level	fields	is	
output.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  2d	arrays	must	be	(i,j).	
•  3d	arrays	must	be	decomposed	in	(i,j).	
•  4d	arrays	must	be	the	special	scalar-type	
aggrega*ons	of	3d	arrays	(they	are	processed	
as	lists	of	3d	array	elements).	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  The	Registry	is	not	involved	in	the	actual	
format	of	the	input	or	output	data.	

•  The	format,	frequency,	name	of	the	file,	etc.	
are	all	run-*me	op*ons	(though	the	namelist	
op*ons	controlling	those	capabili*es	are	
defined	in	the	Registry).	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  Only	use	an	“i”	for	variables	that	are	input.		For	
example,	convec*ve	precipita*on	is	not	input	
from	the	real	program,	and	should	not	have	an	
“i”.	

•  Similarly,	developers	tend	to	think	every	variable	
that	was	used	is	vital.		Judiciously	select	those	
that	will	be	given	an	“h”	designa*on.			

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	I/O	handled	in	the	Registry?	

•  The	“r”	designator	is	mandatory	for	fields	that	
are	required	to	manufacture	an	iden*cal	
simula*on,	when	comparing	a	restart	run	to	a	
non-restart	run.	

•  Including	an	“r”	for	non-mandatory	fields	makes	
the	restart	file	larger	and	the	associated	I/O	
slower,	but	otherwise	has	no	nega*ve	forecast	
impact.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  The	same	block	of	informa*on	controlling	the	I/O	
has	a	few	keywords	that	control	the	nes*ng.	

•  	 u	=>	feedback	up	to	parent	mesh	
•  	 d	=>	horizontally	interpolate	down	to	child	
domain	

•  	 f	=>	lateral	boundary	forcing	
•  	 s	=>	smoothing	on	CG	in	area	of	FG	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  The	“u”,	“d”,	and	“f”	op*ons	are	able	to	use	a	
default	for	most	con*nuous	variables	(though	the	
horizontal	staggering	is	important).	

•  Developers	may	associate	a	new	subrou*ne	with	
a	new	physics	variable,	though	this	is	not	too	
common.	

•  Almost	all	of	the	lateral	boundary	forcing	is	the	
dynamics	variables,	with	no	usage	for	the	physics	
variables.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  As	with	most	Registry	items,	it	is	usually	safest	
for	a	developer	to	copy	a	similar	(and	exis*ng)	
Registry	line	for	the	ini*al	idea	for	a	new	
variable.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  Developers	handling	land	surface	fields	must	
be	concerned	with	masking.	

•  An	average	across	the	spa*al	extent	of	a	
parent	cell	might	include	both	water	and	land	
points	from	the	child,	which	would	feedback	
garbage	to	the	parent.			

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  While	the	mnemonics	of	“u”	and	“d”	refer	to	“up”	and	
“down”,	respec*vely,	the	WRF	nes*ng	code	is	general.	

•  	 d	=>	once	only,	at	the	start	of	the	model	simula*on	
•  	 u	=>	child	to	parent,	at	the	end	of	each	set	of	child	
*me	steps	(that	bring	the	child	and	parent	to	the	same	
*me)	

•  	 f	=>	parent	to	child,	at	the	start	of	each	set	of	child	
*me	steps	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	nes*ng	handled	in	the	Registry?	

•  For	example,	CG	SST	may	be	handed	to	the	FG	at	
each	CG	step	via	an	“f”	op*on	(subrou*ne:	
c2f_interp):	

•  state real OM_TMP \
•  i{nocnl}j misc 1 Z \
•  i012rhdu=(copy_fcnm) \
•  f=(c2f_interp:grid_id) \
•  "OM_TMP" "temperature" "k"

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	communica*on	handled	in	the	Registry?	

•  There	are	three	kinds	of	communica*ons	
possible	with	WRF:	

•  	 halo	=>	next	door	neighbor	
•  	 period	=>	west-east	or	south-north	exchange	
•  	 transpose	=>	inside	ARW	proper	-	largely	for	
FFTs	

•  Most	developers	(if	they	are	concerned)	are	only	
concerned	with	halo	communica*ons.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	communica*on	handled	in	the	Registry?	

•  The	halo	comms	are	specified	for	a	list	of	
variables,	and	the	size	of	the	stencil	for	each	
those	variables.			

•  halo HALO_EM_PHYS_A dyn_em 4:u_2,v_2

•  Please	see	for	more	informa*on	on	WRF	stencils:	
•  www.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Software.pdf

Adding	to	or	modifying	the	WRF	
Registry	

•  How	is	communica*on	handled	in	the	Registry?	

•  Overspecifying	the	size	of	the	stencil	has	no	ill	
effects	on	results,	it	is	just	a	performance	sink.	

•  The	same	communica*on	paCern	may	“used”	
inside	of	WRF	mul*ple	*mes.	

•  #ifdef DM_PARALLEL
•  # include "HALO_EM_PHYS_A.inc"
•  #endif

Adding	to	or	modifying	the	WRF	
Registry	

•  How	does	the	Registry	help	with	memory	
management?	

•  The	Registry	offers	a	“package”	op*on	which	
associates	state	variables	with	par*cular	namelist	
op*ons.	

•  Developers	should	include	this	for	their	schemes.	
•  Non-used	package	variables	are	allocated	only	
with	1	word	of	space	(for	example:	(1,1,1)	for	a	
3d	array,	and	(1,1)	for	a	2d	array).	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	does	the	Registry	help	with	memory	
management?	

•  The	package	op*on	is	able	to	handle	condi*onal	
namelist	sejngs	through	the	use	of	derived	
namelist	sejngs.	

•  The	data	used	from	metgrid	by	the	real	program	
is	not	required	by	the	WRF	model,	so	it	is	in	a	
package	controlled	by	a	derived	namelist	
variable.	

Adding	to	or	modifying	the	WRF	
Registry	

•  How	does	the	Registry	help	with	memory	
management?	

•  rconfig			integer	use_wps_input					\	
•  derived						1									0		

•  package			realonly					use_wps_input==1			-				\						
state:u_gc,v_gc,…	

Talk	#1:	WRF	Parallelism	Best	Prac*ces	

•  Review	of	WRF:	patch,	*le,	halo	
•  How	MPI	and	OpenMP	fit	into	WRF	parallelism	
•  Strong	vs	weak	scaling	
•  Choosing	domains:	appropriate	to	core	count,	aspect	ra*o,	*ming	vs	memory	
•  Domain	and	computa*on	decomposi*on:	MPI	and	OpenMP		
•  Impact	of	nes*ng	on	core	counts	
•  Nes*ng	overhead	

Patch,	Tile,	Halo	

WRF Software
Architecture

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/implementation-
specific details

–  Well-defined interfaces between layers, and external packages for communications,
I/O, and model coupling facilitates code reuse and exploiting of community
infrastructure, e.g. ESMF.

Registry	

WRF Software
Architecture

•  Driver Layer
–  Domains: Allocates, stores, decomposes, represents abstractly as single

data objects
–  Time loop: top level, algorithms for integration over nest hierarchy

Registry	

WRF Software
Architecture

•  Mediation Layer
–  Solve routine, takes a domain object and advances it one time step
–  Nest forcing, interpolation, and feedback routines

Registry	

WRF Software
Architecture

•  Mediation Layer
–  The sequence of calls for doing a time-step for one domain is known in

Solve routine
–  Dereferences fields in calls to physics drivers and dynamics code
–  Calls to message-passing are contained here as part of Solve routine

Registry	

WRF Software
Architecture

•  Model Layer
–  Physics and Dynamics: contains the actual WRF model routines are

written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain

Registry	

Call Structure Superimposed
on Architecture

wrf (main/wrf.F)

integrate (frame)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
G3 (phys/module_cu_g3.F

solve_interface -> solve_em (dyn_em)

module_cumulus_driver (phys)

module_first_rk_step_part1 (dyn_em)

Distributed	Memory	Communica*ons	

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor’s updates to that element of the
array won’t be seen on this processor.

When
Needed?

Why?

Signs in
code

 (module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .
 DO j = jts,jte
 DO k = kts,ktf
 DO i = its,ite
 mrdx=msft(i,j)*rdx
 mrdy=msft(i,j)*rdy
 tendency(i,k,j)=tendency(i,k,j)- &
 (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
 (rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &
 mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
 (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &
 msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
 H2avg(i,k+1,j)-H2avg(i,k,j) &
)/dzetaw(k) &
)
 ENDDO
 ENDDO
 ENDDO
 . . .

Distributed	Memory	Communica*ons	

 (module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .
 DO j = jts,jte
 DO k = kts,ktf
 DO i = its,ite
 mrdx=msft(i,j)*rdx
 mrdy=msft(i,j)*rdy
 tendency(i,k,j)=tendency(i,k,j)- &
 (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
 (rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &
 mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
 (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &
 msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
 H2avg(i,k+1,j)-H2avg(i,k,j) &
)/dzetaw(k) &
)
 ENDDO
 ENDDO
 ENDDO
 . . .

Distributed	Memory	Communica*ons	

 (module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .
 DO j = jts,jte
 DO k = kts,ktf
 DO i = its,ite
 mrdx=msft(i,j)*rdx
 mrdy=msft(i,j)*rdy
 tendency(i,k,j)=tendency(i,k,j)- &
 (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
 (rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &
 mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
 (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &
 msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
 H2avg(i,k+1,j)-H2avg(i,k,j) &
)/dzetaw(k) &
)
 ENDDO
 ENDDO
 ENDDO
 . . .

Distributed	Memory	Communica*ons	

•  Halo updates

Distributed	Memory	MPI	
Communica*ons	

memory on one processor memory on neighboring processor

*
+ *
*

* *	

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed	Memory	(MPI)	
Communica*ons	

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed	Memory	(MPI)	
Communica*ons	

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed	Memory	(MPI)	
Communica*ons	

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

all y on
patch

all z on
patch

all x on
patch

•  Halo updates
•  Periodic boundary updates
•  Parallel transposes
•  Nesting scatters/gathers

Distributed	Memory	(MPI)	
Communica*ons	

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km

SUBROUTINE driver_for_some_physics_suite (
 . . .
!$OMP DO PARALLEL
 DO ij = 1, numtiles
 its = i_start(ij) ; ite = i_end(ij)
 jts = j_start(ij) ; jte = j_end(ij)
 CALL model_subroutine(arg1, arg2, . . .
 ids , ide , jds , jde , kds , kde ,
 ims , ime , jms , jme , kms , kme ,
 its , ite , jts , jte , kts , kte)
 END DO
 . . .

 END SUBROUTINE

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model_subroutine (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (State and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .

WRF Model Layer Interface

 template for model layer subroutine

. . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = jts, MIN(jte,jde-1)
 DO k = kts, kte
 DO i = its, MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

WRF Model Layer Interface

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain	dimensions	
•  Size	of	logical	domain	
•  Used	for	bdy	tests,	etc.	

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain	dimensions	
•  Size	of	logical	domain	
•  Used	for	bdy	tests,	etc.	

•  Memory	dimensions	
•  Used	to	dimension	dummy	

arguments	
•  Do	not	use	for	local	arrays	

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jts,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain	dimensions	
•  Size	of	logical	domain	
•  Used	for	bdy	tests,	etc.	

•  Memory	dimensions	
•  Used	to	dimension	dummy	

arguments	
•  Do	not	use	for	local	arrays	

•  Tile	dimensions	
•  Local	loop	ranges	
•  Local	array	dimensions	

 template for model layer subroutine

 SUBROUTINE model (&
 arg1, arg2, arg3, … , argn, &
 ids, ide, jds, jde, kds, kde, & ! Domain dims
 ims, ime, jms, jme, kms, kme, & ! Memory dims
 its, ite, jts, jte, kts, kte) ! Tile dims

 IMPLICIT NONE

 ! Define Arguments (S and I1) data
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
 REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
 . . .
 ! Define Local Data (I2)
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
 . . .
 ! Executable code; loops run over tile
 ! dimensions
 DO j = MAX(jt,jds), MIN(jte,jde-1)
 DO k = kts, kte
 DO i = MAX(its,ids), MIN(ite,ide-1)
 loc1(i,k,j) = arg1(i,k,j) + …
 END DO
 END DO
 END DO

•  Domain	dimensions	
•  Size	of	logical	domain	
•  Used	for	bdy	tests,	etc.	

•  Memory	dimensions	
•  Used	to	dimension	dummy	

arguments	
•  Do	not	use	for	local	arrays	

•  Tile	dimensions	
•  Local	loop	ranges	
•  Local	array	dimensions	

•  Patch	dimensions	
•  Start	and	end	indices	of	local	

distributed	memory	subdomain	
•  Available	from	media*on	layer	

(solve)	and	driver	layer;	not	usually	
needed	or	used	at	model	layer	

How	OpenMP	and	MPI	Fit	

WRF Domain Decomposition

•  As you increase the number of total MPI tasks, you reduce the
amount of work inside of each MPI task

•  The amount of time to process communication between MPI tasks
tends to be at best constant

•  As more MPI tasks are involved, more contention for hardware
resources due to communication is likely

•  As the computation time gets smaller compared to the
communications time, parallel efficiency suffers

Application: WRF

•  WRF can be run serially or as a parallel job
•  WRF uses domain decomposition to divide total amount of

work over parallel processes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

	
Model domains are decomposed for parallelism on two-levels

Patch: section of model domain allocated to a distributed memory
node, this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory
parallelism is over tiles within patches

•  Single version of code for efficient execution on:

–  Distributed-memory
–  Shared-memory (SMP)
–  Clusters of SMPs
–  Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition
Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware: The Computer

•  The ‘N’ in NWP
•  Components

–  Processor
•  A program counter
•  Arithmetic unit(s)
•  Some scratch space (registers)
•  Circuitry to store/retrieve from memory device
•  Cache

–  Memory
–  Secondary storage
–  Peripherals

•  The implementation has been continually refined, but the
basic idea hasn’t changed much

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware has not changed
much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 26 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Dual core, 2.6 GHz chip

64-bit floating point precision

20 MB L3

A	computer	in	2013	

…how we use it has

•  Fundamentally, processors haven’t changed much since 1960
•  Quantitatively, they haven’t improved nearly enough

–  100,000x increase in peak speed
–  100,000x increase in memory size

•  We make up the difference with parallelism

–  Ganging multiple processors together to achieve 1011-12 flop/second
–  Aggregate available memories of 1011-12 bytes

~1,000,000,000,000 flop/s ~2500 procs
48-h,12-km WRF CONUS in under 15 minutes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Strong	vs	Weak	Scaling	

•  Hurricane	Sandy	
example	

•  40	km	50x50	
•  Decomposed	4	cores	

(1x4,	4x1)	

•  4	km	500x500	
•  Decomposed	400	

cores	(16x25,	8x50)	

Choosing	Domains	

January 2000 Benchmark – 1 task:
74x61

January 2000 Benchmark – 2
tasks: 74x31

January 2000 Benchmark – 4
tasks: 37x31

January 2000 Benchmark – 8
tasks: 37x16

January 2000 Benchmark – 16
tasks: 19x16

January 2000 Benchmark – 32
tasks: 19x8

January 2000 Benchmark – 64
tasks: 10x8

Choosing	Computa*onal	Domains	

•  What	does	it	mean	to	choose	an	appropriate	
computa*onal	domain?	

•  For	the	WRF	model	to	run	correctly	and	yield	
physically	meaningful	results,	a	geographic	
domain	must	be	selected	that	allows	the	
model	to	the	necessary	informa*on	to	
develop	the	simula*on.	

Choosing	Computa*onal	Domains	

•  What	does	it	mean	to	choose	an	appropriate	
computa*onal	domain?	

•  Similarly,	the	computa*onally	invariant	
aspects	of	the	domain	layout	are	important.		
For	the	same	physics	op*ons	and	domain	size,	
a	simula*on	over	the	US	vs	Europe	take	about	
the	same	amount	of	*me.	

Choosing	Computa*onal	Domains	

•  What	does	it	mean	to	choose	an	appropriate	
computa*onal	domain?	

•  The	computa*onal	domain	is	concerned	with	
numbers	of	grid	cells	and	the	mapping	of	
those	cells	onto	processors.	

Choosing	Computa*onal	Domains	

•  What	does	it	mean	to	choose	an	appropriate	
computa*onal	domain?	

•  The	WRF	model	by	default	has	a	simple	
algorithm	to	divvy	up	the	domain	into	patch	
sized	pieces.	

WRF Domain Decomposition

•  The WRF model decomposes domains horizontally
•  For n MPI tasks, the two nearest factors (n= k * m)are selected;

the larger is used to decompose the y-direction, the smaller is used
to decomposed the x-direction

•  Users may choose a preferred decomposition (nproc_x, nproc_y)
•  Prime numbers and composites with large prime factors are usually

to be avoided

•  The behavior of 132 vs 131, and 200 vs 202 are quite different

There	once	was	a	machine	next	to	Wal-Mart	
Which	before	the	recabling,	would	fall	apart	

	Day	a`er	day	
	I	always	seem	to	say 		

Have	this	job	finish	‘ere	this	life	I	depart	
	 	 	 	 	 	 	 	 	 	 	Samuel	Coleridge	

																																																																																								Rime	of	the	Ancient	Modeler	

•  How	many	
•  How	to	use	
•  How	to	choose	

	

Just	How	Many	Cores	Do	I	Need	

•  The	WRF	model	*ming	is	sensi*ve	to	the	
selec*on	of	model	op*ons	and	various	domain	
configura*ons.	

•  For	a	fixed	grid	size	(km)	and	number	of	grid	
cells,	the	choice	of	microphysics	and	radia*on	
impact	the	model	run-*me.	

•  For	non-chemistry	runs	and	for	non-bin	MP	
runs,	the	WRF	model	is	not	a	memory	hog.	

•  Horizontal	domain	decomposi*on	is	used.	

	

Just	How	Many	Cores	Do	I	Need	
•  Assume	three	different	domains:		
					A																			
1000x1000				

	

Just	How	Many	Cores	Do	I	Need	
•  Assume	three	different	domains:		
					A																				B																													
1000x1000		2000x2000												

	

Just	How	Many	Cores	Do	I	Need	
•  Assume	three	different	domains:		
					A																				B																															C	
1000x1000		2000x2000											3000x3000		

	

Just	How	Many	Cores	Do	I	Need	
•  If	domain	A	fits	on	a	n	cores,	then	domains	B	
and	C	fit	on	4n	and	9n	cores,	respec*vely	

					A																				B																															C	
	

Just	How	Many	Cores	Do	I	Need	
•  The	amount	of	wall-clock	*me	for	domain	B	
(using	4n	cores)	~=	domain	C	(using	9n	cores)	

					A																				B																															C	
	

Just	How	Many	Cores	Do	I	Need	
•  The	larger	the	decomposed	sub-domain,	the	
more	efficiently	it	uses	the	core	(more	work	
with	similar-ish	amounts	of	communica*on).	

Just	How	Many	Cores	Do	I	Need	
•  Scaling	a	WRF	job	is	straigh�orward.	
•  If	a	3000x2000	domain	is	the	desired	domain	
size	of	the	eventual	WRF	simula*on	…	
– 600	(600=30x20)	100x100	sub-domains	could	be	
manufactured	

– Short	*mings	on	a	200x200	domain	(four	sub-
domains	of	100x100)	would	yield	similar	
performance	characteris*cs	

Just	How	Many	Cores	Do	I	Need	
•  WRF	default	decomposi*ons	take	the	two	
closest	factors.	
– 144	total	cores	is	a	12x12	core	set	up,	not	72x2	

•  Be	careful	with	core	counts	with	accidentally	
large	prime	factors.	
– 128	cores	using	6	I/O	processors	gives	122	total	
computa*onal	cores,	decomposing	as	61x2	

•  Decomposed	domains	should	be	larger	than	
10	cells	on	a	side,	and	larger	s)ll	for	
performance.	

Nes*ng	

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

DD	

D1

D2
D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2
D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2

1

2

3,4,5

6,7,8

9,10,11

D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2
D3

D4
D5

1

2

3,4,5

6,7,8

9,10,11

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2

1

2

3,4,5

6,7,8

9,10,11

D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2

1

2

3,4,5

6,7,8

9,10,11

D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD	

D1

D2

1

2

3,4,5

6,7,8

9,10,11

D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

12
13,14,15
16,17,18
19,20,21

22
23,24,25
26,27,28
29,30,31

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

Nesting Suggestions – CG Size

•  The size of the nested domain may need to be
chosen with computing performance in mind.

•  Assuming a 3:1 ratio and the same number of grid
cells in the parent and nest domains, the fine grid
will require 3x as many time steps to keep pace
with the coarse domain.

•  A simple nested domain forecast is approximately
4x the cost of just the coarse domain.

•  Don’t be cheap on the coarse grid, doubling the
CG points results in only a 25% nested forecast
time increase.

Nesting Suggestions – Cost

•  Example: assume 3:1 nest ratio

If the nest has the same number of grid cells, then

the amount of CPU to do a single time step for a
coarse grid (CG) and a fine grid step (FG) is
approximately the same.

Since the fine grid (3:1 ratio) has 1/3 the grid

distance, it requires 1/3 the model time step.
Therefore, the FG requires 3x the CPU to catch up
with the CG domain.

Nesting Suggestions – Same Area

•  Example: assume 3:1 nest ratio

If you try to cover the SAME area with a FG domain

as a CG domain, you need (ratio)^2 grid points.

With the associated FG time step ratio, you require a

(ratio)^3.

With a 3:1 ratio, a FG domain covering the same

area as a CG domain requires 27x CPU.

Nesting Suggestions – Same Area

•  Example:	assume	10:1	nest	ra/o	
	
To	change	your	test	case	from	50-km	resolu*on	to	a	
finer	5-km	resolu*on	would	be	at	least	1000x	more	
expensive.	

Nesting Suggestions - Location

•  The	minimum	distance	
between	the	nest	boundary	
and	the	parent	boundary	is	
FOUR	grid	cells	

•  You	should	have	a	 	
larger	buffer	zone	

•  It	is	not	unreasonable	to	
have	approximately	1/3	of	
your	coarse-grid	domain	
surrounding	each	side	of	
your	nest	domain	

1	

2	

1/3									1/3										1/3	

Nesting Suggestions – Inside Out

•  Start with designing your inner-most domain. For
a traditional forecast, you want everything
important for that forecast to be entirely contained
inside the domain.

•  Then start adding parent domains at a 3:1 or 5:1
ratio. A parent should not have a smaller size (in
grid points). Keep adding domains until the most
coarse WRF grid has no more than a 3:1 to 5:1
ratio to the external model (first guess) data.

Nesting Suggestions – Big CG

•  Larger domains tend to be better than smaller
domains.

•  A 60 m/s parcel moves at > 200 km/h. A 2-km
resolution grid with 100x100 grid points could
have all of the upper-level initial data swept out of
the domain within a couple of hours.

Nesting Suggestions – CG dt

Map factors > 1.6

Nesting Suggestions – CG dt

•  The most-coarse domain may have a geographic extent
that causes large map factors.

 time_step = 300 (BLOWS UP)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

•  Reducing the time step so that the coarse grid is stable
makes the model too expensive. 1.5x more

 time_step = 200 (STABLE, PRICEY)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

•  Only reduce the time step on the coarse grid, and keep the
fine grid time steps at their approx original values.

 time_step = 200 (STABLE, CHEAP)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,2 ,3

Nesting Suggestions – CG dt
	
Domain	
Number	

Original	
Time	Step	(s)	
UNSTABLE	

Safe	
Time	Step	(s)	
STABLE	
EXPENSIVE	

BETTER	
Time	Step	(s)	
STABLE	
CHEAPER	

	
Domain	01	
PARENT	
	

	
300	

	
200	

	
200	

	
Domain	02	
CHILD	

	
100	

	
66.6	

	
100	

time_step = 300 (UNSTABLE)
parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt
	
Domain	
Number	

Original	
Time	Step	(s)	
UNSTABLE	

Safe	
Time	Step	(s)	
STABLE	
EXPENSIVE	

BETTER	
Time	Step	(s)	
STABLE	
CHEAPER	

	
Domain	01	
PARENT	
	

	
300	

	
200	

	
200	

	
Domain	02	
CHILD	

	
100	

	
66.6	

	
100	

time_step = 200 (STABLE, PRICEY)
parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt
	
Domain	
Number	

Original	
Time	Step	(s)	
UNSTABLE	

Safe	
Time	Step	(s)	
STABLE	
EXPENSIVE	

BETTER	
Time	Step	(s)	
STABLE	
CHEAPER	

	
Domain	01	
PARENT	
	

	
300	

	
200	

	
200	

	
Domain	02	
CHILD	

	
100	

	
66.6	

	
100	

time_step = 200 (STABLE, CHEAP)
parent_time_step_ratio = 1, ,2 ,3

Nesting Suggestions – CG dt

•  Model time step is always proportional to the time step of
the most coarse grid.

•  The coarse grid is the only grid impacted with large map
factors: dt(s) = 6*dx(km)

•  The nominal grid distance always needs to be scaled:
 dt(s) = 6*dx(km) / MAX (map factor in domain)

•  Reducing the coarse grid time step does not significantly
reduce model performance if you can tweak the time step
ratio.

Nesting Suggestions – CG dt

•  The take away:

•  The time step ratio and grid distance ratio are not

necessarily identical, and may used effectively when large
map factors in the coarse grid domain force a time step
reduction for stability.

•  If map factors are causing stability troubles, it is usually
only the most coarse grid that is impacted since the fine
grid is usually in the middle of the domain.

Nesting Suggestions - Wrap Up

•  Set up domain first to provide good valid forecast,
then deal with efficiency

•  Selecting a set of domains with the reason “it is all
I can afford” gets you into trouble

•  Numerically stable and computationally expedient
do not imply scientifically or physically valid

Talk	#2:	WRF	Op*miza*on	Best	Prac*ces		

•  I/O	(though	mostly	“O”)	
–  netcdf3	vs	netcdf4	(HDF5	compression)	
–  PNETCDF	
–  Quil*ng	
–  io_form	=	102	
–  Run-*me	auxiliary	streams	
–  Ver*cal	interpola*on	
–  Diagnos*cs	

•  Benchmarking	
–  How	to	
–  What	to	avoid	
–  Available	benchmarks	
–  Using	and	interpre*ng	benchmark	informa*on	

•  Debugging	
–  real*4	vs	real*8	
–  ./configure	–d	and	-D	

IO	

WRF I/O
•  By default WRF has netcdf (classic, small file format), binary (internal

one-off format), and grib1 formats available. For portability, netcdf
(io_form=2) is the favored default.

•  At compile time, users may request PNETCDF
–  $PNETCDF points to bin lib dir for PNETCDF

–  io_form = 11

•  Typically, PNETCDF is used in combination with WRF QUILTING.
•  nio_tasks_per_group = 0 => How many cores are used per group

for IO. Zero deactivates the option, “2” uses two MPI tasks per
group for IO

•  nio_groups = 1 => usually “one” group per stream (3 domains,
each with history and a restart: 6 nio_groups)

WRF I/O
•  Streams (similar to Fortran units): pathways into and out of model

•  Can be thought of as files, though that is a restriction
–  History + auxiliary output streams (10 and 11 are reserved for

nudging)
–  Input + auxiliary input streams (10 and 11 are reserved for

nudging)
–  Restart, boundary, and a special DA in-out stream
–  Currently, 24 total streams
–  Use the large values and work down to stay away from “used”
–  Non-chemistry: use history streams 13-22, 24
–  Chemistry: use history streams 20, 21, 22, 24

WRF I/O
•  Attributes of streams

–  Variable set
•  The set of WRF state variables that comprise one read or write on a stream
•  Defined for a stream at compile time in Registry

–  Format
•  The format of the data outside the program (e.g. NetCDF), split
•  Specified for a stream at run time in the namelist

WRF I/O
•  Attributes of streams

–  Additional namelist-controlled attributes of streams
•  Dataset name
•  Time interval between I/O operations on stream
•  Starting, ending times for I/O (specified as intervals from start of run)

Example	1:	Add	output	without	
recompiling	

•  Edit	the	namelist.input	file,	the	/me_control	namelist	record	
iofields_filename = "myoutfields.txt” (MAXDOM)
io_form_auxhist24 = 2 (choose an available stream)
auxhist24_interval = 10 (MAXDOM, every 10 minutes)

•  Place	the	fields	that	you	want	in	the	named	text	file	
myoutfields.txt	

+:h:24:RAINC,RAINNC

•  Where	“+”	means	ADD	this	variable	to	the	output	stream,	“h”	is	
the	history	stream,	and	“24”	is	the	stream	number	

Data,	data	every	where,	
nor	any	drop	to	drink	

																																	Samuel	Coleridge	
																																																																																						Rime	of	the	Ancient	Modeler	

		
•  Output	data	more	quickly	
•  Output	data	more	smallly	
•  Output	data	more	lessly	

Example	1:	Zap	output	without	
recompiling	

•  Edit	the	namelist.input	file,	the	/me_control	namelist	record	
iofields_filename = "myoutfields.txt”

•  Place	the	fields	that	you	want	in	the	named	text	file	
myoutfields.txt	

-:h:0:W,PB,P

•  Where	“-”	means	REMOVE	this	variable	from	the	output	
stream,	“h”	is	the	history	stream,	and	“0”	is	the	stream	
number	(standard	WRF	history	file)	

(De)Selec*ng	Model	Output	Fields	

•  Several	years	ago	John	Michalakes	provided	a	
simple	run-*me	op*on	to	add	and	remove	fields	
from	WRF	streams	

 &time_control
 iofields_filename = "myoutfields.txt”
 /

-:h:0:W,PB,P
	

(De)Selec*ng	Model	Output	Fields	

•  Par*cularly	helpful	when	ncview	shows:	

	

(De)Selec*ng	Model	Output	Fields	

•  Removing	half	of	the	unwanted	or	never	used	
3d	arrays	cuts	your	file	sizes	in	half	

•  Default	values	for	“history”	that	are	in	the	
Registry	do	not	obligate	users	

	

CF	Compliant-ish	
If	you	output	the	WRF	model	data	with	a	single	
*me	period	per	file,	ncview	is	able	to	recognize	
the	WRF	projec*ons.	

 &time_control
 frames_per_outfile = 1, 1,
 /

S*tching	Model	Output	Together	

•  Yunheung	Wang	(CAPS)	developed	and	Kevin	
Manning	improved	a	scheme	that	joins	“split	
data”	back	together	

 &time_control
 history_interval_s = 150, 60, 60,
 io_form_history = 102
 /

S*tching	Model	Output	Together	

•  Running	on	20	cores	could	produce	the	following	
WRF	model	decomposi*on	and	output:

S*tching	Model	Output	Together	

•  With	large	domains,	model	output	can	dominate	
the	total	wall	clock	*me	

•  With	the	“102”	op*on,	when	running	on	800	
cores,	there	are	800	files		

•  Files	get	constructed	with	names	such	as	
wrfout_d01_2010-06-23_15:00:00_0000
wrfout_d01_2010-06-23_15:00:00_0001
…
wrfout_d01_2010-06-23_15:00:00_0799

S*tching	Model	Output	Together	

•  The	only	purpose	is	*ming	performance	
•  Works	well	with	mul*ple	domains	and	when	
restarts	overlap	with	model	output	*mes	

•  The	joining	program	is	DM	parallel	
•  For	a	2000x2000x100	WSM6	domain,	2	minutes	
per	*me	period	with	8	cores	manufactured	the	
single	file	

•  Scripts	exist	to	run	the	joining	program	
concurrently	with	WRF	

S*tching	Model	Output	Together	

• 			Single	file	input:	
Timing for processing wrfinput file
(stream 0) for domain 1:
320.15085 elapsed seconds

• 			Mul*ple	file	output:	
Timing for Writing
wrfout_d01_2010-06-23_12:00:00 for
domain 1: 0.90883 elapsed
seconds

NETCDF4	Compression	

•  Huang	Wei	and	Jianyu	Liu	have	put	in	a	simple	
way	to	get	impressive	NETCDF4	compression	
with	WRF	model	output	

•  If	the	user	has	NETCDF4	libraries	that	have	
HDF5	compression	included,	then	a	single	
“env”	variable	is	all	that	is	required	

	

NETCDF4	Compression	

•  Prior	to	running	./configure …	
	
setenv NETCDF4 1
export NETCDF4=1

NETCDF4	Compression	

•  This	is	fully	supported	in	WRF	3.5	and	beyond	
•  File	sizes	tend	to	be	about	half	of	the	original	
size	

•  The	compression	works	well	with	fields	which	
contain	similar	values	(such	as	near-zero	
quan**es	for	many	of	the	hydrometeor	fields)	

•  YS	NETCDF	tools	support	this	compression:	
ncview,	ncl,	nco	

NETCDF4	Compression	

•  It	takes	*me	to	“compress”	data.	
•  500x500,	256	cores	*me	to	write	model	
output	(s)	

•  Using	io_form=102,	the	extra	*me	is		

NETCDF3	 NETCDF4	
IO_FORM	=	2	 25	 45	
IO_FORM	=	102	 0.35	 0.65	

Diagnos*cs	
&time_control
 io_form_history = 0
 io_form_auxhist23 = 2,
 auxhist23_interval = 60, 30, 10,
 frames_per_auxhist23 = 1, 1, 1,
 auxhist23_outname = "PLEVS_d<domain>_<date>”
/

 &diags
 p_lev_diags = 1
 num_press_levels = 2
 press_levels = 50000, 25000
/

Diagnos*cs	
&time_control
 io_form_history = 0
 iofields_filename = "field_list_d01.txt”, …
 io_form_auxhist24 = 2
 auxhist24_interval = 60, 30, 10,
 frames_per_auxhist24 = 1, 1, 1,
 auxhist24_outname = "SFC_d<domain>_<date>”
/

&afwa
 afwa_diag_opt = 1, 1, 1,
/

File:
+:h:24:MU,RAINC,RAINNC,U10,V10,T2,Q2,XLAT,XLONG,AFWA_MSLP,	REFL_10CM

Benchmarking	

Benchmarking	

Revamping	the	exis*ng	benchmark	files	
	
Small	one	is	425x300,	12-km,	3-h:	so	suitable	for	
most	desktop	->	department-sized	systems	
	
Will	provide	restart,	lateral	boundary,	and	
namelist.input	for	all	WRF	releases:	from	3.0.1.1	
upto	3.7	
	

Benchmarking	

•  2001	Oct	24	0000	UTC	init	+	24-h	simula*on,	
drop	a	restart	

•  3-h	forecast	(72	s	*me	step)	gives	150	*me	
steps	

•  No	I/O	counted	in	*ming	
•  For	1	through	1024	cores	(by	powers	of	2)	

Benchmarking	

•  Finding		W	I	D	E		varia*on	in	*mings,	but	a	
definite	slowing	trend	

•  Ran	200	instan*a*ons	of	each	of	8	WRF	model	
releases	

Benchmarking	

Debugging	

Debugging	

•  What	are	simple	recommenda*ons	for	trying	to	
debug	a	problem	in	WRF?	

•  The	WRF	build	system	allows	the	user	to	
configure	the	model	to	run	with	many	compiler-
supplied	error	trapping	systems	ac*vated.	

•  		./clean -a	
•  	 ./configure –D
•  This	executable	will	run	VERY	slowly.	

Debugging	

•  What	are	simple	recommenda*ons	for	trying	to	
debug	a	problem	in	WRF?	

•  Try	to	track	down	problems	in	big	domains	by	
simplifying:	

•  	 smaller	domains	
•  	 single	processor	
•  	 remove	physics	op*ons	sequen*ally	
•  	 short	forecasts	through	use	of	restart		

Debugging	

•  When	does	NCAR	want	to	be	contacted?	

•  When	a	standard	model	set	up	fails,	we	want	
to	know.	

•  “Standard”	is	a	recent	release	running	with	
reasonable	sejngs,	and	typical	input	data	
that	we	frequently	run.	

Debugging	
•  When	does	NCAR	NOT	want	to	be	contacted?	

•  A	developer	wrote	code,	and	now	the	WRF	
model	fails	when	the	op*on	is	turned	on.	

•  A	developer	wrote	code,	and	now	the	WRF	
model	fails	even	when	the	op*on	is	turned	off.	

•  A	developer	wrote	code,	and	there	is	just	no	way	
the	model	failure	could	be	because	of	the	
ABSOLUTELY	SOLID	code	wriCen	by	the	
developer.	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Bad	ini*al	condi*ons	
• 	 The	model	simula*on	fails	quickly	(first	few	
*me	steps).	

• 	 If	the	first	*me	step	is	OK,	look	for	
DRAMATICALLY	bad	fields,	such	as	from	a	flag	
value,	not	an	actual	physically	meaningful	
value.	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Bad	ini*al	condi*ons	
• 	 Too	many,	too	few	ver*cal	levels.	
• 	 Poorly	distributed	ver*cal	levels	(let	the	real	
program	figure	them	out	for	one	of	your	
tests).	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Bad	ini*al	condi*ons	
•  	 If	any	(i,j)	info	is	provided	by	the	WRF	model,	use	
a	visual	tool	(ncview)	to	look	at	that	loca*on	for	
these	fields:	MU,	U,	V,	T,	PH,	QVAPOR,	W.	

•  	 For	3d	arrays,	look	completely	top	to	boCom.	
•  	 The	masked	fields	may	be	problema*c	at	the	
ini*al	*me:	TSLB,	SMOIS,	SEAICE,	SST.	

Debugging	
•  What	are	typical	failure	modes	for	WRF?	

•  Model	is	unstable	early	on	
•  	 The	CFL	viola*ons	are	reported	for	values	>	2.			
•  	 Values	that	large	will	kill	the	WRF	simula*on.	
•  	 Early	CFL	problems	MIGHT	be	alleviated	with	a	
shorter	*me	step.	

•  	 Modify	solve_em.F	to	force	the	RK	and	the	
sound	loop	to	have	only	one	itera*on	to	localize	
the	problem.	

Debugging	
•  What	are	typical	failure	modes	for	WRF?	

•  Model	is	unstable	early	on	
•  	 Again,	early	on,	most	troubles	stem	from	the	IC.	
•  	 Regardless	of	the	loca*on	of	the	failure	message	
(cumulus,	radia*on,	land	surface),	review	closely	
the	IC	file.	

•  	 The	problem,	for	an	early	failure,	is	unlikely	to	
be	due	to	a	problem	in	the	radia*on	scheme,	for	
example.	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Model	is	unstable	later	in	the	simula*on	
•  	 Usually,	shortening	the	*me	step	is	not	that	helpful	
(but	any	port	in	a	storm).	

•  	 Take	care	to	no*ce	if	the	reported	CFL	viola*ons	in	
the	rsl	files	are	fatal,	or	just	“business	as	usual”	and	the	
model	has	recovered	with	ver*cal	velocity	damping.	

•  	 Later-in-the-simula*on	failures	are	hard	to	solve.	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Model	is	unstable	later	in	the	simula*on	
•  	 Is	the	failure	reproducible	–	on	a	re-run	does	the	WRF	
model	fail	exactly	the	same	in	exactly	the	same	place.	

•  	 Reproducible	failures	allow	a	restart	file	to	get	a	short	
simula*on	to	test.	

•  	 If	the	restarted	simula*on	also	successfully	fails,	then	
a	recompiled	code	with	error	trapping	ac*vated	may	
help	out.	

Debugging	

•  What	are	typical	failure	modes	for	WRF?	

•  Model	is	unstable	later	in	the	simula*on	
• 	 What	is	physically	happening?		Is	the	sun	
coming	up	or	sejng?		Is	this	a	land/water	
boundary?		Is	ice	an	issue	at	the	grid	cell?		
What	is	the	first	field	impacted?	

Debugging	
•  What	are	tools	that	NCAR	WRF	user	support	uses	
for	debugging	the	model	when	it	fails?	

•  With	netcdf	output,	a	number	of	simple	visual	
tools	are	available:	ncview,	ncl.	

•  If	the	model	shows	significant	sensi*vity	to	
physical	parameteriza*on	sejngs,	ncdiff	for	a	
few	variables	might	be	helpful.	

•  Variables	to	par*cularly	consider:	MU,	U,	V,	W,	T,	
PH,	QVAPOR,	TSLB,	SMOIS	

Debugging	

•  What	are	tools	that	NCAR	WRF	user	support	uses	
for	debugging	the	model	when	it	fails?	

•  Running	with	different	compilers	(or	even	
different	versions)	is	some*mes	helpful.	

•  When	a	failure	occurs:	
•  	 Does	the	model	work	with	different	ICs	
•  	 Same	IC	source,	different	day	
•  	 Different	physics	

Debugging	

•  What	are	tools	that	NCAR	WRF	user	support	
uses	for	debugging	the	model	when	it	fails?	

•  Floa*ng	precision	can	some*mes	be	helpful.	
•  ./clean	–a	
•  ./configure	–r8			(works	Intel,	PGI,	GNU)	

