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Questions

Should we care about model uncertainties?
What are the sources of model uncertainties?

How can we account for such uncertainties?
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How much can we improve ensemble forecasting by

representing model uncertainties?



1. Should we care about model uncertainties?
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Ensemble mean error grows faster than

ensemble spread

» Ensemble forecast is overconfident

» Underdispersion is a form of model
error

Forecast error = initial error + model
error (+ boundary error)

If we want to improve the accuracy and
reliability of our ensemble system, we
should simulate model uncertainties.



2. What are the sources of model uncertainties?
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(J Systematic model error (e.g., bias) is a critical factor in both ensemble
analyses and forecasts, but we do not discuss about that here.




3. How can we account for model uncertainties?

J A multi-model ensemble

1 A multi-physics ensemble

A multi-parameter ensemble
 Stochastic parameterizations

] Various combinations of all those

[ Stochastic parameter perturbations (SPP)

Each ensemble forecast is given by the time integration of perturbed
equations

e (d,T) =ej(d,0)+?[A(ej,t)+P(ej,t)+5Pj(ej,t)]dt

oP,(L,o,p)=1(L,@)P.(L,0,p)+ F, (1,0, p)
SPPT SKEB




3. a. A multi-model approach

TIGGE medium-range ensemble forecasts

- Solves different dynamical equations 7500 RMSE (Northern Hemisphere, DJF2013/14)
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Center Country Acronym .
Bureau of Meteorology Australia BoM UC) 50
China Meteorological Administration China CMA 8
Canadian Meteorological Centre Canada CMC § —8— CMAIS
Centro de Previsio de Tempo e Estudos Climaticos Brazil CTPEC 0 » GPTECcnl.  —@— CPTECIS
C 30 =< ECMWF cntl. —@— ECMWF51
European Centre for Medium-Range Weather Forecasts Europe ECMWF =<+ JMA cntl —— JMA51
= KMACnl,  —@= KMA24
Japan Meteorological Agency Japan JMA =<+ NCEPcnl.  =—@= NCEP21
Korea Meteorological Administration Korea KMA 0 9= Unigant. == Lol
s ! I I | I I 1 I 1 1 1 I 1 1
Méo-Frace France MF 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360
Met Office United Kingdom UKMO Forecast time [hr]
National Center for Atmospheric Research United States NCAR
National Centers for Environmental Prediction United States NCEP Fic. 1. Comparison of the skill of Northern Hemisphere 500-hPa forecasts
National Climatic Data Center United States NCDC from systems contributing to TIGGE for Dec 2013 through Feb 2014. Each

forecast is verified against its own analysis. Solid lines show the RMS error
of the ensemble mean, and dashed lines show the control member of each
Swinbank et al. (BAMS 2016) ensemble. Refer to Table | for forecast center abbreviations. The number
following the center name indicates the number of ensemble members
used.



3. b. A multi-physics approach

Different physics parameterization schemes with different
assumptions and parameters

Each ensemble member uses different physics
combinations, predicting a trajectory on a different
attractor

Easy to construct the ensemble; WRF provides dozens of
different options for each physics parameterization scheme

But members are not exchangeable and have different
error distributions.

Hard to interpret the role of each parameterization scheme
and ensemble covariances

Greater development and maintenance costs



b. A multi-physics approach (example)

Tellus (2011), 634, 625-641 Tellus A © 2011 John Wiley & Sons A/S . W R F A RW V3 . 1

No claim to original US government works

TELLUS ® Test period: Nov-Dec
2008
The U.S. Air Force Weather Agency’s mesoscale e Tested over CONUS at
ensemble: scientific description and
performance results

Printed in Singapore. All rights reserved

45/15km one-way
nested domain
ByJ.P.HACKER'™ S.-Y. HA%,C. SNYDER? J. BERNER F. A. ECKEL®, E. KUCHERA®, ® 10-member ensemble

M.POCERNICH%S.RUGG*J. SCHRAMM?and X. WANG®, 'Naval Postgraduate School, Monterey, . .
CA, USA; *National Center for Atmospheric Research, Boulder; CO, USA; *National Weather Service Office of WI t h Vvarious ensem b | e

Science and Technology, Silver Spring, MD, USA; *Air Force Weather Agency, Bellevue, NE, USA; 3University of

Oklahoma, Norman, OK, USA m et h (0] d S
(Manuscript received 14 April 2010; in final form 1 December 2010) P A co nt ro I ensem b | e uses
ABSTRACT a downscaled global

This work evaluates several techniques to account for mesoscale initial-condition (IC) and model uncertainty in a

short-range ensemble prediction system based on the Weather Research and Forecast (WRF) model. A scientific e n Se m b | e ( 10 m e m b e rS

description and verification of several candidate methods for implementation in the U.S. Air Force Weather Agency

mesoscale ensemble is presented. Model perturbation methods tested include multiple parametrization suites, land- f 2 1 b G E F S
surface property perturbations, perturbations to parameters within physics schemes and stochastic ‘backscatter” stream- O Ut O -I I l e I I l e r )
function perturbations. IC perturbations considered include perturbed observations in 10 independent WRF-3DVar

cycles and the ensemble-transform Kalman filter (ETKF). A hybrid of ETKF (for IC perturbations) and WRF-3DVar o O b S e rva ti O n - S p a C e

(to update the ensemble mean) is also tested. Results show that all of the model and IC perturbation methods examined

are more skilful than direct dynamical downscaling of the global ensemble. IC perturbations are most helpful during Ve riﬁ Ca ti O n O n d O m a i n 1
the first 12 h of the forecasts. Physical parametrization diversity appears critical for boundary-layer forecasts. In an

effort to reduce system complexity by reducing the number of suites of physical parametrizations, a smaller set of

parametrization suites was combined with perturbed parameters and stochastic backscatter, resulting in the most skilful

and statistically consistent ensemble predictions.



b. A multi-physics approach (example)

Table 2. Configuration of multiphysics ensemble.
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Fig. 4. Root-mean-square ensemble-mean

error (RMSE; solid curves) and total spread
(dashed curves) of Cntl (circle) and Phys
(triangle). Shown are (a) zonal wind

component and (b) temperature for 62

forecasts at 48-h lead time during November

2008-January 2009 over the continental

Member Land Surface PBL Microphysics Cumulus Long-wave Short-wave
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4 Noah MYJ Kessler BM CAM Dudhia
5 Noah MYJ Lin Grell CAM CAM
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3. ¢. A multi-parameter approach

* Perturbs parameters within a single physics suite
* No need to develop and maintain multiple physics schemes

* Relatively costly to develop and maintain (given that the model is
frequently updated)

*  Which parameters (and how much) should we perturb in a realistic
mesoscale ensemble prediction system? => Needs an expert’s opinion
on the choice of parameters and the range of their uncertainties in each
parameterization scheme

* Hard to find a strong linear parameter-state relationship



3. ¢. A multi-parameter approach (example)

Multi-parameter ensemble using WRF (Hacker et al., Tellus 2011b)
- 10-member ensemble at 45-km resolution over the CONUS
- Same IC and LBCs for the 10 members
- Only varying parameters in the control physics parameterization
- Subgrid-cloud radius in cumulus; Entrainment rate in the convective PBL;

intercept parameter for rain-drop size distribution in WSM5; scattering
parameter in SW

Table 1. Parameters or variables chosen for the perturbation experiments, with descriptions of the initial distributions assigned

Scheme Parameter Units Min Mean Max Distribution
KF AR m -300 0 300 A (6, 6)
YSU Ap None 0.1 0.15 0.3 (2,6)
WSMS No m™ 2 x 10° 8 x 100 2x 107 A(1.5,6)
Dudhia acA m’ kg™ 2x 1078 [ x 107 2% 107 B(4.8,6)




c. A multi-parameter approach (cont'd)

Perturbations in each parameter generally produced similar magnitude
responses, but with different response time scale.

Lacking of a priori knowledge on the broad effect of each parameter in
various physics scheme, it is not easy for a multi-parameter approach
to produce large ensemble spread which can lead to reliable and
improved mesoscale forecasts, although previous studies proved that it
is superior to a downscaled ensemble.



3. d. Stochastic parameterizations (SPPT)

Stochastically Perturbed Parametrization Tendency scheme (SPPT; Buizza et al.

1999, Palmer et al. 2009, Berner et al. 2014)

Rational: As grid resolution increases, the equilibrium assumption is no longer
valid and fluctuations of the subgrid-scale states should be sampled.

2 =+ )=
at total at dynamics physics
Local tendency Dynamical tendencies  Physical tendencies
for variable X => Resolved scales => Unresolved scales

- To represent uncertainty associated with parameterizations,

perturb accumulated tendencies from physics v\ 'I .

parameterizations (in u, v, t, and q,)




3. d. Stochastic parameterizations (SKEB)

» Stochastic Kinetic Energy Backscatter scheme (SKEB; Shutts 2005, Berner
etal. 2011, 2015)

Rational: A fraction of the subgrid-scale energy is scattered upscale and acts as
random streamfunction and temperature forcing for the resolved-scale flow.
Here a simplified version with constant dissipation rate can be considered as

additive noise with spatial and temporal correlations.

0X 0X 0X 0X
= - =

at total at dynamics at physics at stoch

Local tendency Dynamical tendencies Physical tendencies  Stochastic perturbation tendencies
for variable X  => Resolved scales => Unresolved scales => Unresolved scales

- Represent unresolved upscale energy transfer

Stochastic Forcing Pattern —>




3. d. Stochastic parameterizations (cont’d)

Potential of stochastic parameterizations

» Estimating uncertainty in weather and climate predictions

» Reducing systematic model errors arising from unrepresented subgrid-
scale fluctuations

» Triggering noise-induced regime transitions

» Capturing the response to changes in the external forcing

T700mb [K] at 2008060906

NO_SKEB: Spread (max: 1.56) SKEB: Spread (max: 1.81)
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FIG. 3. A radar reflectivity image valid at 0000 UTC 9 Jun 2008. FIG. 4. The 12-h forecast ensemble spread with (“SKEB”) and without (“NO_SKEB”) the stochastic forcing H a et a | . ( IVI W R 2 O 1 5 )

valid at 0600 UTC 9 Jun 2008. The spread (as standard deviation) of horizontal wind speed at 700 hPa larger than
2ms ! is contoured every 1 ms ™, while the one of temperature at 700 hPa greater than 0.2 K is colored.



3. d. Stochastic physics parameterizations (cont’d)

Release status in WRF

*» SKEBS and the option for a random (or stochastic) pattern
generation are released

“» SPPT is not officially released, but can be switched on
starting WRFV3.8.

¢ SPP (Stochastically perturbed parameters) will be released in
Spring 2017 (beta-testers welcome)

&stoch

rand_perturb =1, 1 1,
skebs =1, 1, 1,
sppt =1, 1, 1,
Spp =1, 1, 1, /



4. How much can we improve ensemble forecasting?
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4. How much can we improve ensemble forecasting? (cont’d)
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4. How much can we improve ensemble forecasting?
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FIG. 13. Fractions skill score as a function of radius of influence for probabilistic forecasts for the (a)—(c) early (forecast hours 1-12) and
(d)—(f) late (forecast hours 18-36) periods from the control (blue), PLBC (mustard), SKEBS (red), and SPPT (green) averaged over
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bars indicate the bounds of the 90% confidence intervals. Where the control curve is not seen, it is behind the PLBC curve. Colored
markers indicate where ensemble forecast configurations have statistically significant differences from the control ensemble forecast.

Romine et al. (MWR 2014)




Key points

v" There is model uncertainty in weather and climate
prediction; It is essential to represent the model uncertainty.

v" Easy to increase ensemble spread; Hard to reduce errors
(maintaining a robust ensemble system).

v" In a reliable ensemble system, total spread matches the
ensemble mean error.

v" In NWP, we can use observations to determine model
uncertainty (although a proper observation error
characterization can be challenging due to the
representativeness error).



Thank you!
Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble

prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887-2908.

Shutts, G.]., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. ]. Roy. Meteor. Soc.,
131, 3079-3102.

Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic
parameterization and model uncertainty. Tech. Rep. ECMWF RD Tech. Memo. 598, 42 pp.

Berner, ], S.-Y. Ha, |. P. Hacker, A. Fournier, C. Snyder 2011:“Model uncertainty in a mesoscale ensemble prediction system:
Stochastic versus multi-physics representations”, Mon. Wea. Rev., 139, 1972-1995.

Hacker, J.P., S.-Y. Ha, C.M. Snyder, J. Berner, F.A. Eckel, E. Kuchera, M. Pocernich, S. Rugg, ]. Schramm, and X. Wang, 2011: The U.S.
Air Force Weather Agency's mesoscale ensemble: Scientific description and performance results. Tellus, 634, 625-641.

Hacker, ].P., C. Snyder, S.-Y. Ha and M. Pocernich, 2011: Linear and non-linear response to parameter variations in a mesoscale
model. Tellus, 63A, 429-444.,

Romine, G., J. Berner, K. Fossell, C. Snyder, ]. L. Anderson and M. L. Weisman, 2014: Representing forecast error in a convection-
permitting ensemble system, Mon. Wea. Rev., 142 ,4519—4541.

Berner, ], K. Fossell, S.-Y. Ha, . P. Hacker, C. Snyder 2015: “Increasing the skill of probailistics forecasts: Underatanding
performance improvements from model-error representations, Mon. Wea. Rev., 139, 1972-1995.

Ha S.-Y,, ]. Berner, C. Snyder, 2015: “Model-Error representation in ensemble data assimilation”, Mon. Wea. Rev., 143, 3893-3911.



Backup slides



Namelist parameters

Generally the following characteristics of the stochastic pattern

can be tuned:

* the spatial lengthscale

* temporal decorrelation time

e pattern amplitude

* random seed (to generate different random number stream)
* threshold value (to cut off values beyond a threshold)

&stoch

rand_perturb =1, 0, 0
gridpt_stddev_rand_pert =0.3,0.3,0.3
stddev_cutoff_rand_pert = 3.0, 3.0, 3.0
lengthscale_rand_pert =50000.0,50000.0,50000.0
timescale_rand_pert =21600.0,21600.0,21600.0



Stochastically perturbed tendency scheme (SPPT)

Rationale: Especially as resolution increases, the
equilibrium assumption is no longer valid and
fluctuations of the subgrid-scale state should be

sampled (Buizza et al. 1999, Palmer et al. 2009, Berner

et al. 2014)

X = Dx+(+1)Px

o

\

Local tendency Dynamical Physical
for variable X tendencies => tendencies
Resolved scales =>"Unresolved
scales

< Perturbs accumulated U,V,T,Q tendencies from
physical parameterizations packages

<> Same pattern for all tendencies to minimize
introduction of imbalances
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Stochastic-kinetic energy backscatter
scheme (SKEBS)

Rationale: A fraction of the subgrid-scale energy is
scattered upscale and acts as random streamfunction

and temperature forcing for the resolved-scale flow
(Shutts 2005, Berner et. al 08,09). Here simplified
version with constant dissipation rate: can be
considered as additive noise with spatial and temporal
correlations.

oX = Dx + Px+ dDx.srocu

L

Local tendency Dynamical Physical
for variable X tendencies => tendencies
=U,V, 1 Resolved scales => Unresolved

Additive stocﬁgghecs
perturbation tendencies

=> Unresolved scales




Random pattern can be used to perturb user specific fields, e.g., lower boundary
conditions or parameters (does nothing, unless user specifies interface)

SKEBS or SPPT pattern can now also be used to perturb the lateral boundaries

7 Either in conjunction with interior SKEBS perturbations or just as lateral boundary
perturbation



Stochastic pattern perturbs parameters

» closure tendencies in GF convection scheme
» Turbulent mixing length, subgrid cloud fraction, thermal

and

moisture roughness lengths in MYNN PBL
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