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Basic concept of ensemble prediction
Ensemble prediction estimate not only the most 
likely state but also its uncertainty.
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Questions	

1.  Should	we	care	about	model	uncertainties?	
2.  What	are	the	sources	of	model	uncertainties?	
3.  How	can	we	account	for	such	uncertainties?	
4.  How	much	can	we	improve	ensemble	forecasting	by	
representing	model	uncertainties?	

	



Ensemble	mean	error	grows	faster	than	
ensemble	spread	
Ø  Ensemble	forecast	is	overconfident	
Ø  Underdispersion	is	a	form	of	model	

error	
	
Forecast	error	=	ini:al	error	+	model	
error	(+	boundary	error)	
	
	
If	we	want	to	improve	the	accuracy	and	
reliability	of	our	ensemble	system,	we	
should	simulate	model	uncertain:es.	

1. 	Should	we	care	about	model	uncertainties?	
	

- - - - - ensemble spread 
           ensemble mean 

Buizza et al. (2004) 



2.	What	are	the	sources	of	model	uncertainties?	

q  Approximations	and	assumptions	in	the	construction	of	a	numerical	
model	of	the	physics	laws	

•  Land-surface	parameterization	
•  Boundary-layer	parameterization	
•  Convective	parameterization	
•  Microphysical	parameterization	
•  Short-	and	long-wave	radiation	schemes	
	

q  InsufYicient	grid	spacing;	sub-grid	scale	uncertainties	

	

	

	

q  Systematic	model	error	(e.g.,	bias)	is	a	critical	factor	in	both	ensemble	
analyses	and	forecasts,	but	we	do	not	discuss	about	that	here.	

ECMWF 



3.	How	can	we	account	for	model	uncertainties?	

q A	multi-model	ensemble	
q A	multi-physics	ensemble	
q A	multi-parameter	ensemble	
q Stochastic	parameterizations		
q Various	combinations	of	all	those	
q Stochastic	parameter	perturbations	(SPP)	
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2. The ECMWF operational ensemble (ENS) today

Each ensemble forecast is given by the time integration of perturbed 
equations
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SPPT: Stochastically Perturbed Parameterized Tendencies
(to represent uncertainty associated with parameterisations)

SKEB: Stochastic Kinetic Energy Backscatter
(to represent unresolved upscale energy transfer)
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3.	a.	A	multi-model	approach	

Swinbank	et	al.	(BAMS	2016)	

The	International	Grand	Global	Ensemble	(TIGGE)	
																								http://tigge.ecmwf.int	

-	Solves	different	dynamical	equations	



3.	b.	A	multi-physics	approach	

•  Different	physics	parameterization	schemes	with	different	
assumptions	and	parameters		

•  Each	ensemble	member	uses	different	physics	
combinations,	predicting	a	trajectory	on	a	different	
attractor		

•  Easy	to	construct	the	ensemble;	WRF	provides	dozens	of	
different	options	for	each	physics	parameterization	scheme	

•  But	members	are	not	exchangeable	and	have	different	
error	distributions.		

•  Hard	to	interpret	the	role	of	each	parameterization	scheme	
and	ensemble	covariances	

•  Greater	development	and	maintenance	costs	

	



b.	A	multi-physics	approach	(example)	

● WRF	ARW	V3.1	
●  Test	period:	Nov-Dec	
2008	

●  Tested	over	CONUS	at	
45/15km	one-way	
nested	domain	

●  10-member	ensemble	
with	various	ensemble	
methods	

● A	control	ensemble	uses	
a	downscaled	global	
ensemble	(10	members	
out	of	21-member	GEFS)	

● Observa:on-space	
verifica:on	on	domain	1	



b.	A	multi-physics	approach	(example)	

Verification against sounding obs 
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between upscale and downscale spectral transfer, with the up-
scale component being available to the resolved flow as a kinetic
energy source (Shutts, 2005). To simulate a stochastic kinetic
energy source, we follow Berner et al. (2009) and introduce
random stream-function and temperature perturbations with a
prescribed kinetic energy spectrum. This approximate backscat-
ter was shown by Shutts (2005) and Berner et al. (2009) to
be just as effective as dissipation-dependent backscatter. The
power-law exponent was estimated from coarse-grained high-
resolution model output. Spatial correlations in the random pat-
tern are generated by expanding the stream-function forcing in
spectral space and evolving each wavenumber as a first-order
auto-regressive process. This allows full control over the spatial
and temporal characteristics of the perturbations, and in prac-
tice the ensemble spread from the perturbations can be tuned.
The stochastic kinetic energy backscatter scheme, assuming spa-
tially constant dissipation rate as assumed here, has been shown
to improve the skill in the ECMWF ensemble forecasting system
(Berner et al., 2009). Its implementation and performance in the
AFWA mesoscale ensemble are discussed in detail in Berner
et al. (2011).

A reduced set of three physics suites, combined with param-
eter perturbations, was also tested to explore the potential for
less complexity. Clear theoretical guidance for choosing mem-
bers from the complete list in Table 2 is lacking. Under the
constraint that AFWA’s operational configuration (Member 6)
be included, we initially chose configurations 3 and 9 to com-
plete the ensemble based on the following objective goals: (1)
Exclude members that have especially large deterministic er-
rors, as measured by the RMS and mean of observation minus
forecast (o − f ) values, averaged over the domain and over
each experiment period. (2) Select members whose differences
have as little correlation as possible, as measured by the tem-
poral correlation between paired o − f time series at a given
lead time. Member correlations with other members were sum-
marized by averaging squared correlations over all observations
and then summing over all other members. (3) Select a subset of
members whose variance is as large as possible, by computing
the variance for all three-member subensembles that include the
operational configuration.

The thermal (multilayer force-restore) land-surface scheme
leads to large near-surface summer-time biases (not shown) in
Member 3. We thus chose Member 7, which differs only slightly
from Member 3 based on criteria (2) and (3) above, to replace it.
Switching the WSM5 for the Thompson microphysics scheme
introduced further variability.

Hacker et al. (2011), in this issue, details the choice of pa-
rameters for Member 6. Parameters to perturb the six additional
physics schemes for Members 7 and 9 were also chosen based
on literature reviews and sensitivity studies, and are presented
in the Appendix. Three values for each parameter are used here:
the default, a high value and a low value. A coin flip deter-
mined which perturbed member adopted the high or low value

of each parametrization. This ensemble is termed Limited Multi-
Physics, Multi-Parameter (LMP2).

Finally, the techniques in Stoch and LMP2 were combined
to create the ensemble LMP2_Stoch. We show below that this
combination produces the most skilful probabilistic forecasts of
any tested here.

3. Evaluation methods

3.1. Observations and metrics

Ensemble performance evaluation follows typical probabilistic
verification practices, and includes metrics to assess statistical
consistency, reliability and resolution. Rank histograms and reli-
ability diagrams separate reliability from resolution; Brier scores
and continuous rank-probability scores (CRPS) summarize the
joint contribution of reliability and resolution. For a detailed
discussion of these metrics, we refer the reader to Jolliffe and
Stephenson (2003).

Another measure of reliability is the degree of consis-
tency between ensemble spread and error. A reliable ensemble
will exhibit approximate agreement between root-mean-square
ensemble-mean error (RMSE) and ‘total spread’, which includes
both ensemble spread and observation error. This approximate
agreement expresses the degree to which the ensemble can
on-average predict the observation distribution, and can be ex-
pressed as

[
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where RMSE of the ensemble mean is the left-hand side, total
spread is the right-hand side, the subscript n = 1, . . . , N indexes
the total number of verifying observations for the experiment
valid at a particular forecast lead time, fn is the ensemble-mean
forecast, σ 2

f ,n is ensemble variance and σ 2
o,n is observation-error

variance. Here we will evaluate relative consistency between the
different ensembles.

In a multiphysics or perturbed-parameter ensemble, each
member can be differently biased. Defining bias to be the
experiment-mean error as a function of observing station, pres-
sure level (or surface) and forecast lead time, we remove the bias
of each forecast before computing scores or spreads. That is, we
use corrected individual-member forecasts at a given lead time
f ′

k = fk − (o − f ), where k indexes observations or forecasts at
particular horizontal location, level and ensemble member, and
the average is over available instances of verifying observations.

Observation error estimates can also be considered in the ver-
ification. Estimating observation error values is generally diffi-
cult, but within a data assimilation context it is possible to obtain
values consistent with a particular model (e.g. Desroziers et al.,
2005). We test with values of σ o estimated at NCEP, with the
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Table 2. Configuration of multiphysics ensemble.

Member Land Surface PBL Microphysics Cumulus Long-wave Short-wave

1 Thermal YSU Kessler KF RRTM Dudhia
2 RUC MYJ Eta KF RRTM Dudhia
3 Thermal MYJ WSM6 KF RRTM CAM
4 Noah MYJ Kessler BM CAM Dudhia
5 Noah MYJ Lin Grell CAM CAM
6 Noah YSU WSM5 KF RRTM Dudhia
7 Noah MYJ WSM5 Grell RRTM Dudhia
8 RUC YSU Lin BM CAM Dudhia
9 RUC YSU Eta BM RRTM CAM
10 RUC MYJ Thompson Grell CAM CAM

Note: Member 6 uses the same physics suite as the operational configuration at AFWA.

The IC-perturbation methods studied here use multiple
physics suites, and their skill can thus be evaluated relative to the
multiphysics ensemble described in the next section. The PO,
ETKF and Hybrid use observations at 0000 and 1200 UTC to up-
date first-guess perturbations taken from the 12-h ensemble fore-
casts, resulting in new perturbations every 12 h. Balloon-borne
soundings, cloud-drift winds from GOES water vapour imagery
(Velden et al., 1997) and Aircraft Communications Addressing
and Reporting System (ACARS; Lord et al., 1984) in situ re-
ports were used in all experiments. Experiments over CONUS
used surface observations, but the East Asian experiments did
not. Observation error-variance values, where needed, were bor-
rowed from NCEP estimates. These are discussed in more detail
later.

2.3. Simulating model uncertainty

An ensemble that attempts to account for model uncertainty can
be easily created by choosing distinct physics suites for each
ensemble member. Physics variations may include subgrid scale
closure (PBL, microphysics and deep convection), forcing (ra-
diative transfer) and lower boundary conditions (land-surface
model or a relaxation scheme). Eckel and Mass (2005) argue
that this is one way to generate models with different attractors,
which may be beneficial because no single model reproduces the
atmosphere’s attractor. Their results show that multiphysics en-
sembles contribute important diversity to an ensemble, but that
including entirely different modelling systems (such as the WRF
and MM5) in an ensemble leads to still more useful informa-
tion. Several other studies, for example, Stensrud et al. (2000);
Ziehmann (2000); Hou et al. (2001); Grimit and Mass (2002);
Stensrud and Yussouf (2003); Eckel and Mass (2005); Clark
et al. (2008), have demonstrated the utility of model diversity in
ensembles.

Table 2 summarizes the parametrization suites for ensemble
Phys. By selecting schemes that fundamentally differ from each
other, we made an heuristic attempt to include as much diver-
sity in classes of physics schemes as possible. Considering only

the physics schemes supported with the release of WRF ver-
sion 3.1, the number of possible combinations of schemes is
(4 land surface)×(4 PBL)×(7 microphysics)×(4 cumulus)×(3
long-wave)×(3 short-wave) = 4032. Because physics schemes
are in practice tuned as a suite, many combinations do not work
well or are difficult to use together. We found that the suites in
Table 2 run stably and produce reasonable forecasts. Details and
references for all the physics are in Skamarock et al. (2008).

Imposing perturbations to parameters within a single set
of physics schemes produces an alternative denoted Param.
Murphy et al. (2004) and Stainforth et al. (2005) found climate-
prediction sensitivity to parameter perturbations, and also found
that model quality could degrade with some parameter choices.
It is not clear whether model error in the faster time scales
characterizing NWP can be simulated by varying parameters.
Bowler et al. (2008) found a small positive impact when ap-
plying an auto-regressive process to parameters in the Met Of-
fice ensemble prediction system, but that using multiple physics
schemes led to greater benefit. In this issue, Hacker et al. (2011)
describes our approach more thoroughly. Briefly, single param-
eters are chosen in each of the PBL, microphysics, cumulus
and short-wave radiation schemes in Member 6 from Table 2.
Member 6 uses the AFWA operational physics suite, which is
the same used in ensemble Cntl. Parameter choices are based
on known sensitivity as reported in the literature, and subse-
quent sensitivity tests. Ten parameter sets, each corresponding
to a unique ensemble member, are chosen with a space-filling
Latin Hypercube Sampling (Santer and Williams, 2003). In this
paper we simply compare the predictions from Param with
others.

The stochastic kinetic energy backscatter1 scheme takes yet
another approach, aiming to represent model uncertainty re-
sulting from interactions with unresolved scales. It is based on
the notion that the turbulent dissipation rate is the difference

1 The approach taken here is not formally backscatter because it lacks
an explicit link between dissipation and perturbations, but we retain this
terminology for consistency with published literature.
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Fig. 4. Root-mean-square ensemble-mean
error (RMSE; solid curves) and total spread
(dashed curves) of Cntl (circle) and Phys
(triangle). Shown are (a) zonal wind
component and (b) temperature for 62
forecasts at 48-h lead time during November
2008–January 2009 over the continental
United States.

4.1. Comparison to Cntl

Use of multiple physics suites improves several aspects of the
forecast, and shows particular benefit in the PBL. RMSE and
total spread for Cntl and Phys shows that statistical consistency
is superior in Phys (Fig. 4). Phys shows greater spread than Cntl
for both wind (panel a) and temperature (panel b), with the most
notable differences in the PBL.

Rank histograms show that Phys, PO and Param all improve
reliability of 2-m temperature and 10-m wind-speed predictions
compared to Cntl (Fig. 5). Relative performance among the dif-
ferent ensembles is the same for both temperature (panels a and
b) and wind speed (panels c and d). All ensembles show endemic
underdispersion when observation error is not considered (see
Section 3.1), but become slightly more reliable as the forecast
lead time increases from 12 h (panels a and c) to 48 h (panels b
and d). Similar improvement in reliability among all the ensem-
bles suggests that the LBCs, which determine large-scale growth
in ensemble spread, are primarily responsible. Differences be-
tween the ensembles are smaller. Ensemble Param provides only
slight improvements over Cntl. Ensembles Phys and PO offer
further reliability from the physics diversity, and PO shows the
short lead-time benefit of mesoscale IC variability from the per-
turbed observation approach (Fig. 5a).

The CRPS is a generalization of the Brier score to all thresh-
olds in the observed distribution, and includes contributions from
both reliability and resolution. We verified (not shown) that Brier
scores for predictions exceeding individual thresholds ranging
from the 25th to the 75th observation-distribution percentile give
the same skill ranking among the ensembles, and the CRPS can
be confidently interpreted. We are interested in the difference
between a particular ensemble scheme and the straightforward
Cntl. The CRPS is negatively oriented and for presentation we
reverse the difference so that an improvement over Cntl is shown
as a positive value.

CRPS results show that the greatest benefit of multiple physics
is realized at the surface, but that multiparameter techniques can
be competitive aloft (Fig. 6). Phys (triangle) and PO (square)
offer similar improvements over Cntl for 2-m temperature (panel
a) and 10-m wind speed (panel c). At initialization near the

surface, PO shows additional benefit from introducing explicit
mesoscale IC perturbations. Multiple PBL schemes and land-
surface models can introduce diversity within the ensemble at
fast time scales near the surface. Skill relative to Cntl diminishes
with forecast lead time, either because larger scale uncertainty
becomes more important or diversity in the PBL and soil states
of Cntl (and Param) has grown.

At 70 kPa (Figs. 6b and d) CRPS differences from Cntl are
smaller and uncertainty in those differences, shown by the ver-
tical lines, is greater. Few differences can be accepted as mean-
ingful. Phys and PO both show slight deterioration in 70-kPa
temperature CRPS (panel b) relative to Cntl and PO shows skill
reductions in 70-kPa wind speed (panel d) during the first 36-h
lead time. At 70 kPa Param (inverted triangle) shows no skill
deterioration, but the longer vertical lines shows that the distri-
bution of skill differences is wide.

Ensemble PO shows the benefit of data assimilation at very
short time scales, but it is not perfect. A perfect fit of all en-
semble members to observations would give a perfect CRPS.
Given an optimal data assimilation system and a perfect model,
observation errors prevent a perfect fit and a perfect CRPS.
In practice, suboptimalities and model deficiencies limit the
CRPS further. Ensemble PO still shows much of the bene-
fit of ensemble data assimilation at initialization. The benefit
is quickly lost, and it is unclear why wind speed at 70 kPa
does not show improved CRPS. This topic would require further
investigation.

Improved reliability from using multiple physics suites ac-
counts for some of the improvements in CRPS at the surface.
Reliability for near-surface predictions of exceeding the 75th
percentile of observation distributions at each individual ob-
serving location show (Fig. 7) that ensembles Phys (triangle),
PO (square) and Param (inverted triangle) all offer greater reli-
ability than Cntl (circle). Phys and PO show greatest reliability
for 2-m temperature at both 12 h (panel a) and 48 h (panel b)
lead times. They are most notably more skilful at predicting
threshold exceedance with high probability, indicating skill in
the highest temperature quartile. At lower probability the ensem-
bles perform similarly, indicating similar skill when exceedances
are predicted with low probability. Most forecasts are for low
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Reliability for near-surface predictions of exceeding the 75th
percentile of observation distributions at each individual ob-
serving location show (Fig. 7) that ensembles Phys (triangle),
PO (square) and Param (inverted triangle) all offer greater reli-
ability than Cntl (circle). Phys and PO show greatest reliability
for 2-m temperature at both 12 h (panel a) and 48 h (panel b)
lead times. They are most notably more skilful at predicting
threshold exceedance with high probability, indicating skill in
the highest temperature quartile. At lower probability the ensem-
bles perform similarly, indicating similar skill when exceedances
are predicted with low probability. Most forecasts are for low

Tellus 63A (2011), 3



3.	c.	A	multi-parameter	approach	

•  Perturbs	parameters	within	a	single	physics	suite	

•  No	need	to	develop	and	maintain	multiple	physics	schemes	

•  Relatively	costly	to	develop	and	maintain	(given	that	the	model	is	
frequently	updated)	

•  Which	parameters	(and	how	much)	should	we	perturb	in	a	realistic	
mesoscale	ensemble	prediction	system?	=>	Needs	an	expert’s	opinion	
on	the	choice	of	parameters	and	the	range	of	their	uncertainties	in	each	
parameterization	scheme	

•  Hard	to	Yind	a	strong	linear	parameter-state	relationship	



3.	c.	A	multi-parameter	approach	(example)	

Multi-parameter	ensemble	using	WRF	(Hacker	et	al.,	Tellus	2011b)	
-  10-member	ensemble	at	45-km	resolution	over	the	CONUS	
-  Same	IC	and	LBCs	for	the	10	members	
-  Only	varying	parameters	in	the	control	physics	parameterization	

-  Subgrid-cloud	radius	in	cumulus;	Entrainment	rate	in	the	convective	PBL;	
intercept	parameter	for	rain-drop	size	distribution	in	WSM5;	scattering	
parameter	in	SW	

	



c.	A	multi-parameter	approach	(cont’d)	

•  Perturbations	in	each	parameter	generally	produced	similar	magnitude	
responses,	but	with	different	response	time	scale.	

•  Lacking	of	a	priori	knowledge	on	the	broad	effect	of	each	parameter	in	
various	physics	scheme,	it	is	not	easy	for	a	multi-parameter	approach	
to	produce	large	ensemble	spread	which	can	lead	to	reliable	and	
improved	mesoscale	forecasts,	although	previous	studies	proved	that	it	
is	superior	to	a	downscaled	ensemble.	



3.	d.	Stochastic	parameterizations	(SPPT)	

•  Stochastically	Perturbed	Parametrization	Tendency	scheme	(SPPT;	Buizza	et	al.	
1999,	Palmer	et	al.	2009,	Berner	et	al.	2014)	

	
						Rational:	As	grid	resolution	increases,	the	equilibrium	assumption	is	no	longer	
valid	and	Yluctuations	of	the	subgrid-scale	states	should	be	sampled.	

	
	
	
	
		
	
							-	To	represent	uncertainty	associated	with	parameterizations,	
										perturb	accumulated	tendencies	from	physics		
										parameterizations	(in	u,	v,	t,	and	qv)	
			

∂X
∂t total

= ∂X
∂t dynamics

+ (r+1) ∂X
∂t physics

Local	tendency	
for	variable	X	

Dynamical	tendencies	
=>	Resolved	scales	

Physical	tendencies		
=>	Unresolved	scales	



3.	d.	Stochastic	parameterizations	(SKEB)	
•  Stochastic	Kinetic	Energy	Backscatter	scheme	(SKEB;	Shutts	2005,	Berner	

et	al.	2011,	2015)	

							Rational:	A	fraction	of	the	subgrid-scale	energy	is	scattered	upscale	and	acts	as	
random	streamfunction	and	temperature	forcing	for	the	resolved-scale	Ylow.		
Here	a	simpliYied	version	with	constant	dissipation	rate	can	be	considered	as	
additive	noise	with	spatial	and	temporal	correlations.	

	

	

∂X
∂t total

= ∂X
∂t dynamics

+ ∂X
∂t physics

+ ∂X
∂t stoch

Local	tendency	
for	variable	X	

Dynamical	tendencies	
=>	Resolved	scales	

Physical	tendencies		
=>	Unresolved	scales	

Stochas:c	perturba:on	tendencies		
=>	Unresolved	scales	

Stochastic Forcing Pattern 
 

- Represent unresolved upscale energy transfer  



3.	d.	Stochastic	parameterizations	(cont’d)	

Potential	of	stochastic	parameterizations	

Ø  Estimating	uncertainty	in	weather	and	climate	predictions	

Ø  Reducing	systematic	model	errors	arising	from	unrepresented	subgrid-
scale	Yluctuations	

Ø  Triggering	noise-induced	regime	transitions	

Ø  Capturing	the	response	to	changes	in	the	external	forcing	

1 and 2 in most surface fields although the improve-
ments relative to CNTL tend to be slightly larger on the
finer mesh. Among the observation types, surface al-
timeter shows the biggest improvement frommodel error
representation—PHYS improves the surface altimeter
simulation over domain 1 by;8%, while SKEB is better
than CNTL more than 20% over domain 2. SKEB out-
performs CNTL in all surface fields, improving 2-m
temperature more than 10-m winds in 3-h forecast, but
PHYS is slightly worse than CNTL in surface wind fields,
especially in domain 1. As neither of the model error
techniques is tuned to maximize the impact on particular
fields, a larger benefit of the model error schemes in
surface temperature or altimeter than in horizontal wind
can be interpreted as a larger sensitivity (or response)
where the model error is more pronounced.

To evaluate how much uncertainty is actually repre-
sented in ensemble forecasts, prior ensemble spread
from each experiment is compared in Fig. 8. For this
particular summer month, PHYS consistently produces
the largest ensemble spread in all surface fields except
for surface altimeter setting where SKEB produces al-
most double the spread of PHYS. We show all the time
series plots only for common observations between the
experiments, but when we check the total number of
surface altimeter observations actually used for both
assimilation (e.g., METAR) and verification (e.g.,
mesonet), we find that CNTL rejects a lot of observa-
tions because of insufficient ensemble spread. As a re-
sult, CNTL uses only ;60% of the observations that
are used in the other two experiments, leading to sig-
nificantly poor forecasts in surface altimeter.

FIG. 4. The 12-h forecast ensemble spread with (‘‘SKEB’’) and without (‘‘NO_SKEB’’) the stochastic forcing
valid at 0600 UTC 9 Jun 2008. The spread (as standard deviation) of horizontal wind speed at 700 hPa larger than
2m s21 is contoured every 1m s21, while the one of temperature at 700 hPa greater than 0.2K is colored.

TABLE 2. Physics combinations for the PHYS ensemble.

Physics suite Surface Microphysics PBL Cumulus LW SW

1 Thermal Kessler YSU KF RRTM Dudhia
2 Thermal WSM6 MYJ KF RRTM CAM
3 Noah Kessler MYJ BM CAM Dudhia
4 Noah Lin MYJ Grell CAM CAM
5 Noah WSM5 YSU KF RRTM Dudhia
6 Noah WSM5 MYJ Grell RRTM Dudhia
7 RUC Lin YSU BM CAM Dudhia
8 RUC Eta MYJ KF RRTM Dudhia
9 RUC Eta YSU BM RRTM CAM
10 RUC Thompson MYJ Grell CAM CAM
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has been spun up with the stochastic forcing for
8 days, it still produces large spread over Kansas and
Oklahoma. Note that the same ensemble forecast ini-
tialized from CNTL produces much smaller spread
(,1) even in the convective area (not shown). All these
results indicate that the stochastic forcing can be em-
ployed to represent significant model uncertainty as-
sociated with the mesoscale features in the severe
convection area (such as strong horizontal temperature
and wind gradient along the front).

b. Multiphysics ensemble

The WRF Model supports a variety of physics pa-
rameterization schemes and each scheme makes differ-
ent assumptions and approximations. Thus, we can
easily produce diversity in the ensemble trajectories by
making different combinations of them. From the
practical point of view, the biggest challenges in various
physics combinations are the maintenance of each
physics scheme and the robustness of each combination
throughout the cycling period. To represent the forecast
uncertainty due to imperfect physics parameterization
schemes, we construct a multiphysics ensemble as sum-
marized in Table 2, following Hacker et al. (2011). Each
ensemble member uses 1 of 10 suites of physics schemes
and each suite is employed 5 times in our 50-member
ensemble. The CNTL and SKEB experiments use
suite 5.

4. Results

To examine the effect of the explicit model error
representation, we compare the relative performance of
three different experiments during the cycles. Most

results are similar between domain 1 (at 45-km resolu-
tion) and 2 (at 15-km resolution).

a. Deterministic forecast verification

Figure 5 shows a time series of rms innovations of the
ensemble mean analysis with respect to mesonet ob-
servations (which are not assimilated). The observations
used for verification in each experiment are subjected to
the same quality check as those assimilated, and thus
different experiments typically use different numbers of
observations in both assimilation and verification. To
make a fair comparison, we compute rms errors against
observations common in all the experiments used in the
comparison at each cycle. The ensemble mean analyses
from the three experiments are generally of comparable
quality for 10-m zonal wind, but as shown in the legend
(inside the parentheses), the cycle-mean rms error for
SKEB is slightly smaller than in PHYS, which in turn
outperforms CNTL. Results for 10-m meridional wind
are similar (not shown), and analyses of 2-m tempera-
ture also clearly benefit from the explicit model error
representations compared to CNTL. Surface altimeter
settings exhibit the largest improvement over CNTL,
with 35% reductions of the analysis error (e.g., analysis-
minus-observation differences) throughout the period.
Figure 6 illustrates rms innovations for the 3-h en-

semble mean forecasts to check if the analysis im-
provement due to themodel error representation results
in a better performance in the following forecast. Based
on the rms innovations averaged over the cycles, we find
that SKEB is still the best in all the surface fields. One
might expect that a better analysis leads to a better
forecast for such a short lead time.However, while PHYS
produces the best surface temperature analysis in Fig. 5b,
forecast error quickly grows for 3h to be slightly worse
than SKEB, as shown in Fig. 6b. Bootstrapping over
10000 resamples of the original 240 cycles, the analy-
sis and forecast errors of both SKEB and PHYS are
statistically significantly different from those of CTRL
at the 95% confidence level in all surface variables. The
percentage improvement relative to CNTL is summa-
rized in Fig. 7 in terms of rms innovations of 3-h ensem-
ble mean forecasts for both domains 1 and 2 as follows:

ratio5
rmsiCNTL 2 rmsi

X

rmsi
CNTL

3 100, (2)

where x is SKEB or PHYS. Here the rmsi is the rms
innovations averaged over the whole month period in
each experiment as shown in the legend in Fig. 6. The
positive ratio indicates an improvement over CNTL
and the negative means degradation. Overall, the
forecast skill relative to CNTL is similar on domains

FIG. 3. A radar reflectivity image valid at 0000 UTC 9 Jun 2008.
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3.	d.	Stochastic	physics	parameterizations	(cont’d)	

Release	status	in	WRF	

v SKEBS	and	the	option	for	a	random	(or	stochastic)	pattern	
generation	are	released	

v SPPT	is	not	ofYicially	released,	but	can	be	switched	on	
starting	WRFV3.8.	

v SPP	(Stochastically	perturbed	parameters)	will	be	released	in	
Spring	2017	(beta-testers	welcome)	
	

&stoch		
rand_perturb															=	1,						1,							1,		
skebs																														=	1,						1,						1,			
sppt																																=	1,						1,						1,		
spp																																	=	1,						1,						1,			/		



4.	How	much	can	we	improve	ensemble	forecasting?	
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4.	How	much	can	we	improve	ensemble	forecasting?	(cont’d)	

Ø  In	the	mesoscale	cycling	DA,	represen:ng	model-error	
uncertain:es	(in	PHYS	and	SKEB)	improves	ensemble	
forecasts	determinis:cally	and	probabilis:cally	
(verified	against	independent	observa:ons).		

Ø  SKEB	moderately	increases	the	spread,	improving	the	
forecast	most.	

Ha	et	al.	(MWR	2015)	

each experiment (solid lines) along with the prior spread
(dashed lines) in domain 2 for four different variables.
For sounding observations, we employ observation er-
ror variances taken from the Gridpoint Statistical In-
terpolation (GSI) analysis system (Kleist et al. 2009),
which vary by pressure levels. For example, the obser-
vation error standard deviation of horizontal wind
ranges from 1.4 to 3.2m s21, with a maximum at 250 hPa.
To focus on the differences between experiments (which
use the same observation error), we plot ensemble
spread instead of total spread in Fig. 10. At all levels,
SKEB shows the largest spread and CNTL the least,
except in dewpoint where all three experiments are
comparable. Wind innovations in SKEB and PHYS are
statistically significantly different from CNTL only at a
couple of pressure levels at the 95% confidence level.
Temperature forecast errors in SKEB and PHYS are
also similar to each other, but clearly better than CNTL,
while moisture was hard to improve with the specific
model error techniques throughout the atmosphere. Ha

and Snyder (2014) demonstrated that the quality of the
moisture analysis is rather sensitive to the specification
of observation error in their mesoscale application. The
influence of SKEB on moisture is also indirect since the
stochastic forcing is applied only to streamfunction and
potential temperature.

b. Probabilistic forecast verification

To determine if the model error representation
can result in better probabilistic performance, we com-
pute the Brier score (BS) and the Brier skill score (BSS)
of 3-h ensemble forecasts with respect to sounding data
for the month of June 2008. For the common observa-
tions o between the experiments, we first compute the
time mean mo and the standard deviation so of the ob-
servation at each location for the month-long period.
Because the sounding data are available twice daily,
every day, the total number of forecast samples or cy-
cles, nfcst, is 60:

m
o
5

1

nfcst
!
nfcst

i51
o(i) , (3)

FIG. 7. The improvement (%) of forecast error in SKEB and
PHYS over the one in CNTL for both domains (top) 1 and (bot-
tom) 2 in various surface fields. The rms innovations are computed
against mesonet observations and averaged over the month-long
cycles. Positive means an improvement relative to CNTL in the 3-h
ensemble mean forecast.

FIG. 8. As in Fig. 6, but for the 3-h ensemble prior spread.
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mostly offers a small improvement over PHYS. These
differences largely come from improvements in the re-
liability component of the Brier score (not shown).
The BSS gives the skill of an ensemble forecast with

respect to a reference:

BSS
x
5

BS
ref

2BS
x

BS
ref

, (6)

where x is SKEB or PHYS. For a perfect forecast the
BSS will be 1, while zero indicates no improvement over
the reference forecast. Since we are interested in the
performance of different ensemble experiments com-
pared to that of the baseline experiment, we chose
CNTL as a reference. As shown in Figs. 11c and 11d,
both SKEB and PHYS show better probabilistic skills
than CNTL at all levels thanks to larger ensemble
spread. In the same sounding verification for the me-
ridional wind and dewpoint, both model error ap-
proaches produce better probabilistic skills than the

control run except for dewpoint forecast in SKEB at
925 hPa, which is not statistically significant (not shown).

c. Extended forecast verification

Now we examine how long the positive impact of
model error techniques can last. For that, we take the
ensemble mean analysis from 0000 and 1200 UTC cycles
every other day for the same month and run a de-
terministic forecast for 72 h to be verified against ob-
servations and gridded analyses.

1) VERIFICATION AGAINST OBSERVATIONS

With respect to surface METAR observations, fore-
cast rms errors of each experiment are computed over
the whole CONUS domain (e.g., domain 1) and shown
for the first 24 h in Fig. 12. In CNTL, surface wind error
grows quickly from 1.56 to 2.2m s21 over the first 12 h,
then slowly increases up to 2.4m s21 by 72 h, while the
surface temperature error starts from 2.2K and gradu-
ally increases to ;3K at the 72-h forecast. At the

FIG. 11. Brier scores of the 3-h ensemble forecast in (a) uwind and (b) temperature and the BSS differences from
CNTL in (c) u wind and (d) temperature for the event that is higher than one standard deviation from the time-
mean observations (e.g., bin1: f .mo 1so). Note that the x axis is reversed to show a better performance to the
right. SKEB is marked in red, while PHYS is blue. Filled dots indicate that the experiment is statistically different
from CNTL at 95% confidence intervals.
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mostly offers a small improvement over PHYS. These
differences largely come from improvements in the re-
liability component of the Brier score (not shown).
The BSS gives the skill of an ensemble forecast with
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where x is SKEB or PHYS. For a perfect forecast the
BSS will be 1, while zero indicates no improvement over
the reference forecast. Since we are interested in the
performance of different ensemble experiments com-
pared to that of the baseline experiment, we chose
CNTL as a reference. As shown in Figs. 11c and 11d,
both SKEB and PHYS show better probabilistic skills
than CNTL at all levels thanks to larger ensemble
spread. In the same sounding verification for the me-
ridional wind and dewpoint, both model error ap-
proaches produce better probabilistic skills than the

control run except for dewpoint forecast in SKEB at
925 hPa, which is not statistically significant (not shown).

c. Extended forecast verification

Now we examine how long the positive impact of
model error techniques can last. For that, we take the
ensemble mean analysis from 0000 and 1200 UTC cycles
every other day for the same month and run a de-
terministic forecast for 72 h to be verified against ob-
servations and gridded analyses.

1) VERIFICATION AGAINST OBSERVATIONS

With respect to surface METAR observations, fore-
cast rms errors of each experiment are computed over
the whole CONUS domain (e.g., domain 1) and shown
for the first 24 h in Fig. 12. In CNTL, surface wind error
grows quickly from 1.56 to 2.2m s21 over the first 12 h,
then slowly increases up to 2.4m s21 by 72 h, while the
surface temperature error starts from 2.2K and gradu-
ally increases to ;3K at the 72-h forecast. At the

FIG. 11. Brier scores of the 3-h ensemble forecast in (a) uwind and (b) temperature and the BSS differences from
CNTL in (c) u wind and (d) temperature for the event that is higher than one standard deviation from the time-
mean observations (e.g., bin1: f .mo 1so). Note that the x axis is reversed to show a better performance to the
right. SKEB is marked in red, while PHYS is blue. Filled dots indicate that the experiment is statistically different
from CNTL at 95% confidence intervals.
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performance of different ensemble experiments com-
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CNTL as a reference. As shown in Figs. 11c and 11d,
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than CNTL at all levels thanks to larger ensemble
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Then we group the ensemble forecasts f into four dif-
ferent observation events as bin 1 ( f .mo 1so), bin 2

(mo , f ,mo 1so), bin 3 (mo 2so , f ,mo), and bin 4
( f ,mo 2so). For each event, we compute the BS by
comparing the forecast probability from ensemble
forecasts P to the observed event O at each forecast
cycle as follows:

BS5
1

nstn
!
nstn

n51
[P(n)2O(n)]2 , (5)

where nstn is the total number of stations available at
each sounding level. For a statistical significance test, we
bootstrap the BS (with the original 60 forecast samples)
over 10 000 resamples as for all other comparisons il-
lustrated in this paper. Because the relative perfor-
mances between the experiments are similar for all four
events, we only show the BS for the first event (e.g., for
the strong zonal wind and the high temperature events)
in Figs. 11a and 11b. We reverse the x axis to show a
better performance to the right. At all levels, SKEB and
PHYS significantly outperform CNTL, and SKEB

FIG. 9. The ratio of total spread to rms errors of 3-h ensemble
mean forecasts in each experiment for different surface variables
over domain 2, verified against mesonet (unassimilated)
observations.

FIG. 10. The vertical profile of 3-h ensemble mean forecast rms innovations (solid lines) against sounding ob-
servations and the prior ensemble spread (dashed lines). The rms errors aremarked as filled dots at the levels where
the errors are significantly different from the ones in CNTL at 95% confidence intervals after 10 000 bootstrap
resampling.
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4.	How	much	can	we	improve	ensemble	forecasting?		

Romine	et	al.	(MWR	2014)	

occurring in parts of extreme southern Kansas, western
Oklahoma, and western Arkansas. Perturbations gener-
ally lead to lower probabilities of the precipitation fore-
cast exceeding this threshold over northwest Oklahoma,
as well as parts of Texas, while increasing the areal cov-
erage of lower probabilities to include areas where pre-
cipitation is observed but not forecast by any members of
the control ensemble. Notably, for the SMES ensembles,
the higher probability forecast areas are significantly di-
minished, while markedly increasing the areal coverage
of low probabilities. For this particular example, the
SKEBS forecast appears to provide the best compromise
maintaining higher probabilities over the observed event,
while also improving coverage over areas where the
control forecast was overconfident and failed to trigger
precipitation. Since the discrimination of high-intensity
precipitations events is declined slightly for the SMES
ensembles on average (Fig. 12), future efforts will seek to
better understand if this decrease in skill can be tied to
changes in organization of precipitation systems by im-
posing the SMESs. Examination of other forecast events
suggests that this may be a common pattern.

The PLBC and SMES ensembles shown here improve
aspects of the forecast performance relative to the
control ensemble, although there remains much room
for further forecast improvement, particularly for high-
intensity rain events. Improvements in the forecast
model are clearly warranted, as significant systematic
bias is found in the forecasts presented here, which un-
doubtedly limits forecast skill. The SMESs tested here
lead to shifts in ensemble bias that move further from
the observed state in this tested configuration. Further
tuning of the stochastic parameters might lead to sub-
stantial improvement in performance, particularly for
the SPPT (e.g., Buizza et al. 1999). Combinations of the
PLBC and SMES ensembles could outperform the in-
dividual contributions. Approaches to improve the dis-
persion characteristics of the ensemble through
posterior inflation methods on the ensemble initial
conditions (e.g., Whitaker and Hamill 2012) might also
prove beneficial.
An underlying issue exposed during this study was the

challenge to classify the overall dispersion characteris-
tics of the ensemble forecasts. For some forecast

FIG. 13. Fractions skill score as a function of radius of influence for probabilistic forecasts for the (a)–(c) early (forecast hours 1–12) and
(d)–(f) late (forecast hours 18–36) periods from the control (blue), PLBC (mustard), SKEBS (red), and SPPT (green) averaged over
ensemble forecasts initialized from 25May to 25 Jun 2012, for rain-rate thresholds of (a),(d) 0.25; (b),(e) 1.0; and (c),(f) 10.0mmh21. Error
bars indicate the bounds of the 90% confidence intervals. Where the control curve is not seen, it is behind the PLBC curve. Colored
markers indicate where ensemble forecast configurations have statistically significant differences from the control ensemble forecast.
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Key	points	

ü  There	is	model	uncertainty	in	weather	and	climate	
prediction;	It	is	essential	to	represent	the	model	uncertainty.	

ü  Easy	to	increase	ensemble	spread;	Hard	to	reduce	errors	
(maintaining	a	robust	ensemble	system).	

ü  In	a	reliable	ensemble	system,	total	spread	matches	the	
ensemble	mean	error.	

ü  In	NWP,	we	can	use	observations	to	determine	model	
uncertainty	(although	a	proper	observation	error	
characterization	can	be	challenging	due	to	the	
representativeness	error).		
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Namelist	parameters		

Generally	the	following	characteristics	of	the	stochastic	pattern	
can	be	tuned:	
•  the	spatial	lengthscale	
•  temporal	decorrelation	time	
•  	pattern	amplitude	
•  random	seed	(to	generate	different	random	number	stream)	
•  threshold	value	(to	cut	off	values	beyond	a	threshold)	
	
&stoch	
	rand_perturb														=	1,			0,			0				
	gridpt_stddev_rand_pert			=	0.3,	0.3,	0.3		
	stddev_cutoff_rand_pert			=	3.0,	3.0,	3.0		
	lengthscale_rand_pert					=	50000.0,	50000.0,	50000.0	
	timescale_rand_pert							=	21600.0,	21600.0,	21600.0	

	



∂X
∂t

= DX + (r+1)PX

Local tendency 
for variable X 

Dynamical 
tendencies => 
Resolved scales 

Physical 
tendencies  
=> Unresolved 
scales 

Rationale: Especially as resolution increases, the 
equilibrium assumption is no longer valid and 
fluctuations of the subgrid-scale state should be 
sampled (Buizza et al. 1999, Palmer et al. 2009, Berner 
et al. 2014) 

Stochastically	perturbed	tendency	scheme	(SPPT)	

²  Perturbs accumulated U,V,T,Q tendencies from 
physical parameterizations packages 

²  Same pattern for all tendencies to minimize 
introduction of imbalances 



Rationale: A fraction of the subgrid-scale energy is 
scattered upscale and acts as random streamfunction 
and temperature forcing for the resolved-scale flow 
(Shutts 2005, Berner et. al 08,09). Here simplified 
version with constant dissipation rate: can be 
considered as additive noise with spatial and temporal 
correlations. 

Stochastic-kinetic	energy	backscatter	
scheme	(SKEBS)	

Stochastic Forcing 
Pattern ∂X

∂t
= DX + PX + dDX, STOCH

Local tendency 
for variable X 
=U,V,T 

Dynamical 
tendencies => 
Resolved scales 

Physical 
tendencies  
=> Unresolved 
scales Additive stochastic 

perturbation tendencies  
=> Unresolved scales 



WRF3.7:Random	Fields	

ì  Random pattern can be used to perturb user specific fields, e.g., lower boundary 
conditions or parameters (does nothing, unless user specifies interface) 

ì  SKEBS or SPPT pattern can now also be used to perturb the lateral boundaries  
ì  Either in conjunction with interior SKEBS perturbations or just as lateral boundary 

perturbation 



Stochastic	parameter	perturbations	(SPP)	
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Stochastic pattern perturbs parameters 
Ø   closure tendencies in GF convection scheme 
Ø  Turbulent mixing length, subgrid cloud fraction, thermal 

and 
        moisture roughness lengths in MYNN PBL 
Ø  Future: hydraulic conductivity in RUC LSM 

Jankov et al., et al 2016 


