18th Annual WRF Users' Workshop, 12 -16 June, 2017, Boulder, CO

# Providing Operational GSI and EnKF to the Research Community: 2017 Update

## **Hui Shao**<sup>1,2</sup>, Ming Hu<sup>1,3,5</sup>, Chunhua Zhou<sup>1,2</sup>, Donald Stark<sup>1,2</sup>, and Jeff Beck<sup>1,3,4</sup>

<sup>1</sup> Developmental Testbed Center (DTC)

<sup>2</sup> National Center for Atmospheric Research (NCAR)/Research Applications Laboratory
 <sup>3</sup> National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory
 <sup>4</sup> Cooperative Institute for Research in the Atmosphere (CIRA)
 <sup>5</sup> Cooperative Institute for Research in Environmental Sciences (CIRES)

*Special acknowledgement to* the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC), and other code developers and collaborators

Sponsored by NOAA OAR and NCAR (supported by NSF)

## Data Assimilation Software

• Gridpoint Statistical Interpolation (GSI) analysis system:

- Originally developed by NCEP/EMC
- Community system since 2009
  - Active developers from various operational and research institutes and agencies
  - Centralized support through the Developmental Testbed Center (DTC)
- Operational applications:
  - NCEP: Global Forecasting System (GFS), North American Mesoscale system (NAM), Hurricane WRF (HWRF), Real-Time Mesoscale Analysis (RTMA)
  - NOAA: Rapid Refresh (RAP), High-Resolution Rapid Refresh (HRRR)
  - NASA: Goddard Earth Observing System (GEOS)
  - Air Force: Mesoscale forecast analysis system
- Ensemble Kalman Filter (EnKF) based analysis system:
  - Originally developed by NOAA/ESRL
  - Community system since 2015
  - Applications:
    - Operational as part of the GFS data assimilation (GDAS) system (GSI-EnKF hybrid)
    - Can be used for regional models and systems, e.g., HWRF, NAM, ARW



## **Supported DA Techniques**

- GSI:
  - 2DVar
  - 3DVar
  - 3D (hybrid) EnVar
  - 4D (hybrid) EnVar

- EnVar : Variational (Var) DA using ensemble background covariances
  Hybrid: Variational DA using a combination of climatological and ensemble covariances
  Nomenclature adopted from Lorenc (2013)
- EnKF: using GSI as the observation operators (assimilating same observation types as GSI)
  - Ensemble Square Root Filter (EnSRF)
    - Parallelization scheme based on NCAR Data Assimilation Research Testbed (DART) toolkit
  - Local Ensemble Transform Kalman Filter (LETKF)

## **Code Management and Support**

- Code is managed by the Data Assimilation Review Committee, formed in 2010
  - Include major code development teams
  - Coordinate code development
  - Review code changes
- All committee members are aware of latest code changes and responsible for their specific operational applications
- The DTC provides centralized code support to the general research community



TC

Members since 2010

Member added in 2011

Members added in 2015

## GSI v3.6/EnKF v1.2



### Adding ARW Hybrid Vertical Coordinate Background to GSI

- GSI is updated to run with ARW background using hybrid vertical coordinate
- Resulting differences for analysis increments were found mostly at upper levels

T analysis increment at level 46



### Update to Use of Hybrid Background Error Weighting Profiles in GSI

$$J(\mathbf{x}_1, \alpha) = (\beta_s)^{-1} \mathbf{x}_1^T \mathbf{B}^{-1} \mathbf{x}_1 + (\beta_e)^{-1} \alpha^T A^{-1} \alpha + (\mathbf{H}\mathbf{x} - \delta \mathbf{y}_0)^T R^{-1} (\mathbf{H}\mathbf{x} - \delta \mathbf{y}_0)$$

Static background error covariance Incorporating ensemble backgrounderror information through extended control variable  $\alpha$ 

- $\beta_s$  and  $\beta_e$  are weighting factors for static and ensemble background error contributions. In last GSI release,
  - $\beta_s + \beta_e = 1$
  - $\beta_s$  and  $\beta_e$  were scalar constants
- Currently, GSI loosens up  $\beta_s + \beta_e = 1$  and uses vertical profiles of weighting functions
  - Use diagonal matrix of  $\beta_s$  and  $\beta_e$
  - Fixed code bugs for implementation of diagonal matrices in GSI cost function preconditions

(Parrish, EMC, GSI meeting, 2016)



#### **Correlated Radiance Observation Errors**

 $J(\mathbf{x}_1, \alpha) = (\beta_s)^{-1} \mathbf{x}_1^T \mathbf{B}^{-1} \mathbf{x}_1 + (\beta_e)^{-1} \alpha^T A^{-1} \alpha + (\mathbf{H}\mathbf{x} - \delta \mathbf{y}_0)^T R^{-1} (\mathbf{H}\mathbf{x} - \delta \mathbf{y}_0)$ 

- For satellite observations, observation error covariance matrix (R), specified in the satinfo file, was originally a diagonal matrix => uncorrelated observation errors
- GSI is now updated to use a full **R** as part of options
- A utility cov\_calc is added to util/Correlated\_obs to compute a nondiagonal **R** and recondition



# Application Specific Updates and Enhancements

#### Non-variational cloud analysis:

- Added number concentration for cloud water, cloud ice and rain to match cloudy analysis with the Thompson Microphysical scheme
- Visibility/fog observation namelist options for lowest two levels
- Added capability to use NASA global LaRC cloud products **RTMA**:
- Variational QC algorithm using super-logistic distribution function.
- Added cloud ceiling height and scalar wind as analysis variables **Other**:
- Now using full spectral resolution CrIS radiance observations
- Using NCEP nemio interface
- Unified RAP and NMM-B cloud analysis libraries
- Near surface temperature (NST)
- Utility updates
- Bug fixes

### Polymorphic Observations: from Procedural to Object-Oriented

- Changes are related to steps for adding a new observation type
- Bottom-up development through refactoring to improve overall modularity, extensibility and maintainability





- Aggregate code segments
- Layer code in an algorithm hierarchy
- Provide generic interface
- Reuse and extend generic code for adding new observations

(Guo and Todling, GMAO, GSI meeting, 2017)

# Other Code Refactoring and Optimization Efforts

- Generalized all radiance assimilation across different sensors/ instruments for cloud and aerosol usages in GSI (Zhu, NCEP/EMC, GSI meeting, 2015)
  - Centralized cloud and aerosol usage information
  - Simplified code
  - Enhanced code flexibility to expand current capabilities to additional instruments
- Removed the First-Order Time extrapolation to the Observation (FOTO) from GSI
- Removed other unused modules/variables in GSI
- Updated to netCDF v4.0 functionality

# Toward Unified Operational and ResearchBuild SystemUnified build: Perl, shell

## Community release build: Perl, shell , & make

- Two-step build with user-friendly interface
  - configure: WRF-like menu
  - compile
- Created for general computer platforms
- User support for general usage
- Include compilation of NCEP I/O library code

#### EMC build: make

- Command line
- Tailored for NOAA computers
- Operational compilation

## Unified build: Perl, shell, & cmake

- User interface
  - configure
  - compile
- Can be run from command line
- Include both general platforms and NOAA-specific platforms
- Support operational compilation flags
- Include compilation of NCEP I/ O library code
- User support for both general usage and operational usage (NOAA)
- May consider extension to other applications



New

# DTC Code Tests: Using 4D EnVar for Convective Weather Forecasts

- Evaluate 4D EnVar hourly cycling for a convective scale case
  - 7B.3: Zhou, Chunhua, et. al, Testing and evaluation of the hybrid 4D EnVar GSI for 3-km High-resolution regional applications
- Evaluate 3D/4D EnVar for sub-hourly cycling
  - P12: Beck, Jeff, et. al, An evaluation of 3D- and 4D-EnVar sub-hourly data assimilation in the HRRR

Radar Reflectivity Comparison: 1200 UTC 8 September 2016



### **Call for Research Contributions**

- Repository
  - To apply for access, contact the helpdesk (<u>gsi-help@ucar.edu</u>)
  - Code transition support
- DTC visitor program:
  - Proposals to work directly with the GSI system and/or the NOAA EnKF system are strongly encouraged.
  - Year-around applications
  - Apply via the DTC visitor program website: <u>http://www.dtcenter.org/visitors/</u>

#### DTC DA webpage:

GSI: <u>http://www.dtcenter.org/com-GSI/users/</u> EnKF: <u>http://www.dtcenter.org/EnKF/users/</u> (shared helpdesk and contact)



### **Future Plans**

- Joint DTC-EMC-JCSDA GSI and EnKF community tutorial:
  - 11-14 July, 2017, College Park, MD
- Annual code release for GSI v3.6, EnKF v1.2
  - by end of September 2017
- The community code repository will be transitioned from svn to Git
- Continue to perform code tests and evaluation
- Coordinate with the Joint Effort for Data assimilation Integration (JEDI) led by JCSDA, in collaboration with major development teams
- Encourage community contributions and collaborations



## **Observations** Types (I)

Conventional

- Radiosondes
- Pibal winds
- Synthetic tropical cyclone winds
- Conventional aircraft reports
- ASDAR aircraft reports
- MDCARS aircraft reports
- Dropsondes
- Surface land observations
- Surface ship and buoy observation
- Wind profilers: US, JMA
- Tall tower winds ۲
- SSM/I wind speeds Satellite wind & retrievals
- MODIS IR and water vapor winds
- GMS, JMA, METEOSAT, and GOES cloud drift IR and visible winds
- GOES hourly IR and cloud top winds
- QuikSCAT, ASCAT, and OSCAT wind speed and direction
- ISS-RapidScat winds
- GOES CAWV AMV ۲
  - AVHRR winds

DTC

- EUMETSAT and GOES water vapor cloud top winds
- METAR cloud observations
- SSM/I and TRMM TMI precipitation estimates
- Doppler radial velocities
- VAD (NEXRAD) winds
- Radar Reflectivity Mosaic
- Radar
- Tail Doppler Radar (TDR) radial velocity and super-observation
- Flight level and Stepped Frequency Microwave Radiometer (SFMR) High Density Observation (HDOB) from reconnaissance aircraft
- GPS precipitable water estimates
- GPS GPS Radio occultation (RO) refractivity bending angle profiles
- Doppler wind Lidar data Others
- SBUV ozone profiles, MLS (including NRT) ozone, and OMI total ozone
- SST
- Tropical cyclone VITAL (TCVital)
- PM2.5, PM10
- AOD: MODIS

## Observations Types (II)

- SBUV: n17, n18, n19
- HIRS: metop-a, metop-b, n17, n19
- GOES\_IMG: g11, g12
- AIRS:aqua
- AMSU-A: metop-a, metop-b, n15, n18, n19, aqua
- AMSU-B: metop-b, n17
- MHS: metop-a, metop-b, n18, n19
- SSMI: f14, f15
- SSMIS: f16, f18, f19
- AMSRE: aqua
- SNDR: g11,g12, g13
- IASI: metop-a, metop-b
- GOME: metop-a, metop-b
- OMI: aura

DTC

- SEVIRI: m08, m09, m10
- ATMS: Suomi NPP
- CRIS: Suomi NPP

#### Satellite Radiance

- GCOMW1 AMSR2
- GPM GMI
- Megha-Tropiques SAPHIR
- Himawari AHI

Acronyms should be found from GSI and EnKF's user's guide