RRTMG-P: An Updated and Standardized Radiative Transfer Package for Earth System Applications on High Performance Computing Systems

Robert Pincus University of Colorado

Brian Eaton

NCAR/CGD

John Dennis, Youngsung Kim

NCAR/CISL

John Michalakes (michalak@ucar.edu) UCAR/CPAESS and NRL

18th WRF Users Workshop 13 June 2017 ONR/NOPP-funded: "RRTMGP: A High Performance Broadband Radiation Code for the Next Decade" *

- Update science and software of AER's widely used but 20-year old Rapid Radiative Transfer Model (background on next slide)
- 2013-2016, \$625K between AER, U. Colorado, and NCAR
 - Continuing now under 2-year follow-up grant
 - Also some NASA support
- Implementation in Community Atmosphere Model of CESM is nearing completion
- Active interest: ICON (DWD), GFS (NCEP), NEPTUNE (NRL)

^{*} Mlawer, Berthiaume, Pincus, Eaton, Liu, and Iacono https://www.earthsystemcog.org/projects/espc-aoli/2013 meeting

Background

RRTMGP* builds upon and updates science and software of the 20 year old Rapid Radiative Transfer Model (RRTMG)**

- K-distribution treatment of absorption and emission by gases as a function of temperature, pressure, etc, coupled to two-stream methods for computing radiation transport
- Expensive but highly efficient compared to the reference Line-by-Line RTM
- RRTMG is widely adopted: NCEP, NASA, ECMWF, CESM, and WRF but each group has a different version of the software and these are diverging
- Experimental versions of RRTMG ported/ optimized for next-generation processors (MIC, GPU) ***

- * Mlawer, Berthiaume, Pincus, Eaton, Liu, and Iacono https://www.earthsystemcog.org/projects/espc-aoli/2013 meeting
- ** Mlawer, Taubman, Brown, Iacono, and Clough. Journal of Geophysical Research: Atmospheres. vol. 102, no. D14, 1997.
- *** Michalakes, , Iacono, Jessup. Parallel Processing Letters, 26 No. 4. World Scientific. Dec. 2016. http://dx.doi.org/10.1142/S0129626416500195

RRTMGP Science Improvements

RRTMGP is based on latest spectroscopic knowledge

- Aer_v3.5 * based on HITRAN 2012 ** (vs. HITRAN 2002 for RRTMG)
- Newly validated against Line-by-Line RTM

- * AER Line Parameter Database: http://rtweb.aer.com/line_param_frame.html
- ** The HITRAN Database: https://www.cfa.harvard.edu/hitran/facts.html

Seeks to balance efficiency and flexibility

- Increased efficiency:
 - RRTMGP computational kernels structured to take advantage thread and fine-grain parallelism of new HPC architectures
- Improve flexibility and modularity of the code:
 - Entirely new code using Fortran 2003 Objected Oriented features
 - Models specify clouds, aerosols, gas concentrations by calling "init" methods defined in RRTMGP classes
 - RRTMGP may be built and used as a library that need not be changed for different models and applications
- Allows the currently numerous and divergent applications of the RRTMG to be updated to a single AER-supported community version RRTMGP software for HPC systems

Flexibility: Object oriented brokering layer and interfaces written using Fortran 2003 classes to describe optical and physical properties of clouds, aerosols

- RRTMGP provides classes for
 - Optical properties that can be used directly (RRTMG provides)
 - Abstract and example classes for aerosols, clouds, random numbers (Model developer provides)
 - Output classes that can be extended as needed
 - Computational kernels
 - Example ... (next slide)

Example model code that uses RRTMGP classes to initialize and then call RRTMGP shortwave radiation

```
type(ty gas optics) :: kdist sw
type(ty gas conc) :: gas concs
type(ty fluxes) :: fsw, fswc
type (ty optical props cld) :: cloud sw ! extended from RRTMGP class
ty optical props
. . .
!< Set aas volume mixing ratios
error = gas concs%set vmr('h2o', wv vmr)
error = gas concs%set vmr('co2', 400.*1.e-6)
! Cloud optical properties
error = cloud sw%init(ncol, nlay, kdist sw%get ngpt())
call compute cloud optics (cloud fraction, cloud lwp, &
                            cloud sw%tau, cloud sw%ssa, cloud sw%g, ... )
! Call the RRTMGP shortwave routine
errmsg = rrtmgp sw( &
  kdist sw, gas concs, pmid rad, t rad, pint rad, &
  ... mu0, sfc alb dir, sfc alb dif, &
  ... cloud sw, fsw, fswc, ... )
                                        Blue: provided by or extended from RRTMGP
```

Example model code that uses RRTMGP classes to initialize and then call RRTMGP shortwave radiation

type(ty_g type(ty_g type(ty_f type(ty_c	type, public :: ty_gas_optics real, dimension(:,:,:), allocable :: tau ! optical depth real, dimension(:,:,:), allocable :: ssa ! single-scattering albedo
ty optica	real, dimension(:,:,:), allocable :: g ! asymmetry parameter
!< Set gas voi	
error = g	contains
error = g	procedure, public :: init
! Cloud optica !	<pre>procedure, public :: get_ncol, get_nlay, get_ngpt</pre>
error = c	end type ty_gas_optics_specification
call comp	
	CIOUQ_SWOLAU, CIOUQ_SWOSSA, CIOUQ_SWOG,)

! Call the RRTMGP shortwave routine

```
errmsg = rrtmgp_sw( &
    kdist_sw, gas_concs, pmid_rad, t_rad, pint_rad, &
    ... mu0, sfc_alb_dir, sfc_alb_dif, &
    ... cloud_sw, fsw, fswc, ... )
    Blue: provided by or extended from RRTMGP
```

RRTMGP Efficiency Improvements

Efficiency: redesigned computational kernels (solvers and other core routines) for efficiency on next generation architectures

- Parallelism over adjacent columns as innermost dimension that allows efficient use of Intel's AVX vector instructions and SIMT threads on NVIDIA's GPGPU architecture
- Thread safe software modules, can be called within threaded regions of host models
- May involve trading off maximum performance for software flexibility, but goal is to at least match the performance of current RRTMG codes
- Single source code designed for efficiency on multiple platforms

Computational Performance (Longwave)

Current kernel cost:

- Baseline
 - RRTMG: 5.2 milliseconds
 - RRTMGP: 24.8 milliseconds (4.8x slower)
- Observations
 - RRTMGP performs 4.4x more instructions
 - Two full executions, once for clearsky and once for cloudy (RRTMG combines these)
 - Twice as many g-points as RRTMG (this is being addressed)

Workload

Number of columns = 31 Number of layers = 16

Platform

Yellowstone of NCAR

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz RRTMG LW and RRTMGP LW are extracted as kernels from CESM's CAM using KGEN *

Performance is measured on a single core using the kernels Extrae**/Folding is used for performance analysis

* Kim et al., Procedia Computer Science, **80**, 2016 doi:10.1016/ j.procs.2016.05.466 **Barcelona Supercomputing Center http://www.vi-hps.org/Tools/Extrae.html

Computational Performance (Longuerins

- Current kernel cost:
 - Baseline
 - RRTMG: 5.2 milliseconds
 - RRTMGP: 24.8 milliseconds (4.8x slower)
- Optimizations to date
 - Increased vector utilization in solver
 - Reduced number of floating point divisions in solver
 - Improve L2 cache reuse in gas-optics
 - RRTMGP: 17.5 milliseconds (3.4x slower)

More improvement needed, but on a perinstruction basis, the performance of RRTMGP is similar to RRTMG

RRTMGP Status and Future Work

Readiness for community use

- Coming soon
 - Incorporating into real applications will begin once spectroscopic data has been finalized later this summer for longwave and in the fall for shortwave radiation
- Continued performance improvement (Pincus with NCAR/CISL)
- Prototype implementation in Community Atmosphere Model of CESM (NCAR/GSD) but won't be ready for CMIP6
- NCEP and NRL also tracking development
- RRTMGP should be available for initial testing in WRF later this year
- Todo: make conforming with NUOPC Physics Interface (potentially part of the Navy project).