

### Individual and Combined Impacts of Projected Climate and Emission Changes on Future Air Quality over the U.S.

<u>Chinmay Jena<sup>1</sup></u>, Yang Zhang<sup>1</sup>, Kai Wang<sup>1</sup>, Patrick Campbell<sup>1</sup>, Fang Yan<sup>2,3</sup>, Zifeng Lu<sup>2,3</sup>, David Streets<sup>2, 3</sup>

<sup>1</sup>Department of Marine, Earth, and Atmospheric Sciences, NCSU, Raleigh, NC <sup>2</sup>Computation Institute, University of Chicago, Chicago, IL <sup>3</sup>Energy Systems Division, Argonne National Laboratory, Argonne, IL

18th Annual WRF Users' Workshop



### **Background and Motivation**

#### Emissions Scenarios

Special Report on Emissions Scenarios (SRES, 2000)

Special Report on Emissions Scenarios (SRES, AR4, 2007)

➢ Representative Concentration Pathways (RCP, AR5, 2014)

But both SRES and RCP scenarios neglecting relationship between socioeconomic factors and projected technology change





## **Technology Driver Model (TDM)**





# **Objectives**

# Impacts on Future Air Quality over the U.S. from Emissions Change only vs. Climate Change only vs. Emissions & Climate Changes



# **Model Configuration**

| Domain and Period                                                                     |                                                                                                                                                                    |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • Model                                                                               | Online-coupled WRF-Chem 3.7                                                                                                                                        |  |
| <ul> <li>Period &amp; domain</li> </ul>                                               | Current decade 2001-2010 and future decade 2046-2055 over CONUS                                                                                                    |  |
| <ul> <li>Horiz. &amp; Vert. Resolution</li> </ul>                                     | 36-km & 34 layers vertically from surface to 100 hPa                                                                                                               |  |
| WRF-Chem Physics and Chemistry Options                                                |                                                                                                                                                                    |  |
| Radiation                                                                             | Rapid and accurate Radiative Transfer Model for GCM (RRTMG)                                                                                                        |  |
| • Land and PBL                                                                        | National Center for Environmental Prediction, Oregon State University, Air<br>Force and Hydrologic Research Lab (NOAH) and Yonsei University (YSU)                 |  |
| • Cumulus                                                                             | Multi-Scale Kain Fritsch (MSKF)                                                                                                                                    |  |
| <ul> <li>Microphysics</li> </ul>                                                      | Morrison 2-moment scheme                                                                                                                                           |  |
| <ul> <li>Gas-Phase Chemistry</li> </ul>                                               | Modified CB05 with updated chlorine chemistry                                                                                                                      |  |
| <ul> <li>Aqueous-Phase Chemistry</li> </ul>                                           | AQ chemistry module (AQCHEM)                                                                                                                                       |  |
| • Aerosol Module                                                                      | Modal Aerosol Dynamics Model/Volatility Basis Set<br>(MADE/VBS)                                                                                                    |  |
| Photolysis                                                                            | Fast Troposphere Ultraviolet Visible (FTUV)                                                                                                                        |  |
| Input                                                                                 |                                                                                                                                                                    |  |
| <ul> <li>Meteorological and Chemical (Initial<br/>and Boundary Conditions)</li> </ul> | Modified CESM/CAM5 v1.2.2 (Glotfelty et al., 2016 a,b) for both<br>meteorology & chemistry; meteorology ICs/BCs bias corrected with<br>NCEP/FNL.                   |  |
| <ul> <li>Anthropogenic Emissions</li> </ul>                                           | U.S. EPA National Emissions Inventory 2002, 2005, 2008 for current decade; TDM-projected growth factor under the IPCC/A1B and B2 scenarios based on 2005 emission; |  |
| •Biogenic Emissions                                                                   | Model of Emissions of Gases and Aerosols from Nature version 2 (MEGAN v2)                                                                                          |  |
| <ul> <li>Dust and Sea Salt Emissions</li> </ul>                                       | AER/AFWA (Jones et al., 2012) and Gong et al. (1997) parameterization                                                                                              |  |



# **Simulation Design**

| Simulation Details                                                                               | Impacts on Air Quality                    |
|--------------------------------------------------------------------------------------------------|-------------------------------------------|
| <ul> <li>✓ Current Climate</li> <li>✓ Current GHG Levels</li> <li>✓ Current emissions</li> </ul> | Base Case                                 |
| <ul> <li>✓ Future Climate</li> <li>✓ Future GHG Levels</li> <li>✓ Future emissions</li> </ul>    | Combined emissions and<br>Climate changes |
| <ul> <li>✓ Current Climate</li> <li>✓ Current GHG Levels</li> <li>✓ Future emissions</li> </ul>  | Emissions change only                     |
| <ul> <li>✓ Future Climate</li> <li>✓ Future GHG Levels</li> <li>✓ Future emissions</li> </ul>    | Climate change only                       |



### **Meteorological Performance**



#### Precipitation Performance against Satellite/Reanalysis Data



Generally cold biases for T2, overprediction of WS10 and RH2 in eastern and mountainous areas of U.S., precipitation overpredicted across the domain

#### Simulated O<sub>3</sub> and PM<sub>2.5</sub> Overlaid with Observations

NC STATE

UNIVERSIT



Overall good performance for  $O_3$  (NMB < ±10%), but locally large underpredictions exist in both eastern and western U.S.;  $PM_{2.5}$  performs well in eastern U.S., but there are larger negative biases in western U.S.



## **Projected Emission Changes**



Under the B2 scenario, emissions of CO,  $NO_x$ , VOCs, and  $PM_{2.5}$  are projected to decrease over large areas of domain with a few exceptions (e.g., Ohio River)



#### **Projected Air Quality Changes**



species and gaseous precursors and secondary formation of inorganic aerosols as well as increased precipitation



#### Number of exceedance days for daily 24-hr Avg. $PM_{2.5} > 35 \ \mu g \ m^{-3}$



The number of exceedance days DA 24hr  $PM_{2.5} > 35 \ \mu g \ m^{-3}$  is significantly reduced over eastern U.S.



# Conclusions

- The model shows overall good performance for meteorological variables, O<sub>3</sub> and PM<sub>2.5</sub> over CONUS
- > The maximum daily 8-h average surface ozone (MDA8h  $O_3$ ) increases by ~3 ppb across the U.S. The number of exceedance days (MDA8h  $O_3 > 70$  ppb) is significantly reduced but some areas remain non-attainment
- The daily 24-h average (DA24h) PM<sub>2.5</sub> levels are projected to decrease over eastern U.S. The number of exceedance days (DA24hr PM<sub>2.5</sub> > 35 μg m<sup>-3</sup>) is significantly reduced over eastern U.S.
- The climate change dominates the changes in surface O<sub>3</sub> concentration under the TDM A1B scenario across the CONUS, while the changes in anthropogenic emissions dominate surface O<sub>3</sub> levels under the TDM B2 scenario and PM<sub>2.5</sub> under both TDM A1B and B2 scenarios
- The results will be useful for policy makers to develop integrated strategies to control anthropogenic emissions and mitigate adverse climate change



# Acknowledgments

- The National Science Foundation EaSM program (AGS-1049200) at NCSU and the USDA EaSM program (2012-67003-30192) at the University of Chicago/ANL
- High performance computing support from Yellowstone (ark:/ 85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation; and from Stampede, provided as an Extreme Science and Engineering Discovery Environment (XSEDE) digital service by the Texas Advanced Computing Center (TACC) (http://www.tacc.utexas.edu), which is supported by National Science Foundation grant number ACI-1053575