A high-altitude wind power (HAWP) climatology with global WRF

Mark Stoelinga, James McCaa, and Rhea George

High altitude wind power (HAWP)

VAISALA

High altitude wind power (HAWP)

VAISALA

High altitude wind power (HAWP)

Novel technologies

Wind Resource Assessment Mapping

Designed for "prospecting" wind energy

- A "light" version of regional climate modeling:
 - Primary interest is recent climate
 - Relies on downscaling of global reanalysis datasets
 - Fewer freely forecasted aspects
 - Periodically reinitialized (every N days, N = 3 to 30)
 - Maintain fidelity to reanalysis
 - Parallelization in time

2007: 3TIER's "FirstLook"

- Global, 5-km resolution
- 10-year climatology
 But....
- Turbine hubheight winds
- NCEP/NCAR Reanalysis
- WRF V2
- Simple nudging

And...no global WRF

VAISALA

What did we want this time? How did we get there?

- Global coverage including oceans: *Global WRF V3.7.1*
- Avoid tiling and blending: *Global WRF V3.7.1*
- More output variables, higher altitude: More storage
- Better reanalysis: ERA-Interim
- Better downscaling: Spectral Nudging
- Higher resolution but faster production:
 Mass-conserving diagnostic flow model (10 km → 2 km)
- Other configuration options: YSU PBL, Ferrier micro, RRTMG radiation

Global WRF

- Derived from PlanetWRF
- Major modifications:
 - Unequal map scale factors in x and y directions → allows for global lat/lon grid
 - Polar filter: northern and southern boundaries collapse to single point, requiring special treatment

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E09001, doi:10.1029/2006JE002825, 2007

PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics

Mark I. Richardson,¹ Anthony D. Toigo,^{2,3} and Claire E. Newman¹

Received 8 September 2006; revised 15 March 2007; accepted 7 May 2007; published 14 September 2007.

[1] A new planetary atmospheric numerical model, "planetWRF," has been developed by modifying the Weather Research and Forecasting (WRF) model. The model has

MarsWRF run at 0.5° global resolution

Why not MPAS?

- Experience with WRF
- Physics options
- Continuous mesh refinement not really needed
- Spectral nudging required for reanalysis (or climate model) downscaling.
- However, in the future...

Tribulations with Global WRF

• Two bugs encountered in Global WRF (V3.6.1)

- Polar filter generating negative mixing ratios
- Polar point instability
- Discovered and fixed both by us and WRF team in V3.7
- Recurrent problems with interactions between:
 - Adaptive timestep
 - Restarts
 - ESMF
 - Delayed nests (not for global)

Finally, success! 5-day, hourly loop of 50-m wind speed

8

10

Note, speeds over ocean reduced by 1/2

12

14

4

6

2

10-year mean wind speed, 50 m

Mean Wind Speed (m s⁻¹) at 50 m AGL

	1						1	
2	3	3	4 5	5 6	7	,	8	9 10

10-year mean wind speed, 150 m

Mean Wind Speed (m s⁻¹) at 150 m AGL

	1			1	1			
2	3	4	5	6	7	8	9	10

Ratio, 150-m to 50-m wind speed

Ratio of Mean Wind Speed (150 m) to Mean Wind Speed (50 m)

0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4

VAISALA

Page 16 © Vaisala 6/22/17