New developments and applications using the scale and aerosol aware Grell-Freitas convective parameterization

Georg A. Grell and Saulo R. Freitas

With major acknowledgements to: RAP/HRRR crew, HWRF folks, FIM crew, GEOS-5 crew And not to forget the folks that distribute the NGGPS funding

Grell-Freitas Convective Param

- Scale-aware/Aerosol-aware (Grell and Freitas, 2014, ACP)
 - Stochastic approach adapted from the Grell-Devenyi (2002) scheme, but changed to include temporal and spatial perturbation patterns
 - Scale awareness through Arakawa approach (2011)
 - Aerosol awareness is implemented with empirical assumptions based on a paper by Jiang and Feingold

2014 version of GF operational at EMC in RAP, also in Brazil (using a version of B-RAMS)

- Momentum transport (as in SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold)
- PDF approach for normalized mass flux profiles was implemented
 - Originally to fit LES modeling for shallow convection
 - allows easy application of mass conserving stochastic perturbation of vertical heating and moistening profiles
 - Provides smooth vertical profiles
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment
- Stochastic part now coupled to Stochastic Parameter Perturbation (SPP), and Stochastic Kinetic Energy Backscatter (SKEBS) approach (J. Berner)
- Additional closures for shallow convection (Boundary Layer Equilibrium (BLQE, Raymond 1995; W^{*}, Grant 2001, Heat Engine, Renno and Ingersoll, JAS 1996)

- Momentum transport (as in SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold)
- PDF approach for normalized mass flux profiles was implemented
 - Originally to fit LES modeling for shallow convection
 - allows easy application of mass conserving stochastic perturbation of vertical heating and moistening profiles
 - Provides smooth vertical profiles
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment
- Stochastic part now coupled to Stochastic Parameter Perturbation (SPP), and Stochastic Kinetic Energy Backscatter (SKEBS) approach (J. Berner)
- Additional closures for shallow convection (Boundary Layer Equilibrium (BLQE, Raymond 1995; W^{*}, Grant 2001, Heat Engine, Renno and Ingersoll, JAS 1996)

Momentum transport

Effect of cloud scale horizontal pressure gradients (Gregory et al. 1997, Zhang and Wu, 2000) is to adjust the in-cloud winds towards those of the large scale flow. For the ECMWF approach (follows Gregory et al., 1997), the entrainment rate is simply adjusted

 $E(u,v)_{up}=E_{up}+\lambda D_{up}$ $D(u,v)_{up}=D_{up}+\lambda D_{up}$

Where E(u,v) and D(u,v) are simply the entrainment/detrainment rates.

For SAS approach equations follow directly Zhang and Wu, 2003

- The pressure gradient force across the updraft is proportional to the product of mass flux and vertical shear of the mean wind,
- Proportionality constant is -.55 for Zhang and Wu,
- Gregory at al at first assumed the constant to be -.7

$$\mathbf{P}_{G}^{u} = -C_{u} M_{u} \frac{\partial \bar{\mathbf{v}}}{\partial p}$$
$$\mathbf{P}_{G}^{d} = -C_{d} M_{d} \frac{\partial \bar{\mathbf{v}}}{\partial p}$$

Both are very simple to implement. Proportionality constant was tested for Stochastic Parameter Perturbation (SPP)

Heat source from momentum transport: dissipation of kinetic energy

As in ECMWF, we also include an additional heat source representing dissipation of kinetic energy (Steinheimer et al 2007)

$$\left(\frac{\partial \bar{T}}{\partial t}\right)_{\rm cu} = c_p^{-1} D_{\rm st} g f(p); \qquad f(p) = \frac{\sqrt{\left(\frac{\partial u}{\partial t}\right)_{\rm cu}^2 + \left(\frac{\partial v}{\partial t}\right)_{\rm cu}^2}}{-\int_{P_{surf}}^0 \sqrt{\left(\frac{\partial u}{\partial t}\right)_{\rm cu}^2 + \left(\frac{\partial v}{\partial t}\right)_{\rm cu}^2} dp}$$

$$D_{\rm st} \approx -\left(\frac{\partial K}{\partial t}\right)_{\rm cu} \approx \int_{P_{surf}}^0 \left(\bar{u} \left(\frac{\partial u}{\partial t}\right)_{\rm cu} + \bar{v} \left(\frac{\partial v}{\partial t}\right)_{\rm cu}\right) \frac{dp}{g}$$

Runs with HWRF, Hurricane Sandy

Sandy: Momentum transport, 10-29-06 GF with EC or SAS method, compared to SAS

- Momentum transport (as in SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold 2014)
- PDF approach for normalized mass flux profiles was implemented
 - Originally to fit LES modeling for shallow convection
 - allows easy application of mass conserving stochastic perturbation of vertical heating and moistening profiles
 - Provides smooth vertical profiles
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment
- Stochastic part now coupled to Stochastic Parameter Perturbation (SPP), and Stochastic Kinetic Energy Backscatter (SKEBS) approach (J. Berner)
- Additional closures for shallow convection (Boundary Layer Equilibrium (BLQE, Raymond 1995; W^{*}, Grant 2001, Heat Engine, Renno and Ingersoll, JAS 1996)

Improving the simulation of the diurnal cycle of convection in GF scheme

- In the attempt to improve the diurnal cycle of convection in the GF scheme, we adopted a closure for non-equilibrium convection developed by Bechtold et al. (2014).
- B2014 proposed the following equation for the convective tendency for deep convection: $\partial A/\partial t | \downarrow con\nu = -(A/\tau - \tau \downarrow BL / \tau \partial A / \partial t | \downarrow BL)$

where A is called density-weight buoyancy integral, and ? and ? are appropriated time scales.

• The tendency on the right side of this equation, is the total boundary layer production given by: $\partial A/\partial t | \downarrow BL = -1/T \uparrow * \int p \downarrow surf \uparrow p \downarrow base \square \partial T \downarrow v /\partial t | \downarrow BL dp$

 T^{\ast} is a scale temperature parameter with a range of about 1 to 4 K.

Diurnal cycle of convection over the Amazon Basin

- Momentum transport (as in SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold)
- PDF approach for normalized mass flux profiles was implemented
 - Originally to fit LES modeling for shallow convection
 - allows easy application of mass conserving stochastic perturbation of vertical heating and moistening profiles
 - Provides smooth vertical profiles
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment
- Stochastic part now coupled to Stochastic Parameter Perturbation (SPP), and Stochastic Kinetic Energy Backscatter (SKEBS) approach (J. Berner)
- Additional closures for shallow convection (Boundary Layer Equilibrium (BLQE, Raymond 1995; W^{*}, Grant 2001, Heat Engine, Renno and Ingersoll, JAS 1996)

The original reason for implementing PDF's for vertical mass flux: shallow convection

Changing the vertical mass flux PDF's

- Large changes in vertical redistribution of heat and moisture
- Mass conserving for stochastic approaches
- Significant impact on HAC's,
- Increases spread for ensemble data assimilation

1d version of GF only

Stochastic parameter perturbation in GF scheme

- For stochasticism: significantly different from original approach through bringing in temporal and spatial perturbations, but still possible to perturb the ensembles from GD scheme
 - Apply directly to closure assumptions for location and strength of convection
 - Apply to skewness and sharpness of vertical mass flux PDF's: an easy way to significantly alter **vertical** heating and drying profiles, but conserving mass
 - Momentum transport

Using SPP to perturb normalized vertical mass flux PDF's

- Perturbed 8-member RAP ensemble mean is compared against deterministic RAP initial results are for 4 days only
- July 1, 3, 5, and 8, initial time 00Z

Preliminary results produced by Isidora Jankov

Temperature Bias and RMSE profiles for 24hr lead time

SPP with GF: Opportunities, but much work remains

- Simple initial test for perturbing normalized vertical mass flux PDF's: For most of the variables similar or improved performance from the ensemble mean (including RH, winds and precipitation)
- Coupling with SKEBS (J. Berner)
- Sensitivity: much to learn with "best" stochastic fields, but also limits to perturbation of PDF's
- Can this be tied more to physics?
- Momentum

- Momentum transport (as in SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold)
- PDF approach for normalized mass flux profiles was implemented
 - Originally to fit LES modeling for shallow convection
 - allows easy application of mass conserving stochastic perturbation of vertical heating and moistening profiles
 - Provides smooth vertical profiles
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment: Can be specified
- Stochastic part now coupled to Stochastic Parameter Perturbation (SPP), and Stochastic Kinetic Energy Backscatter (SKEBS) approach (J. Berner)
- Additional closures for shallow convection (Boundary Layer Equilibrium (BLQE, Raymond 1995; W^{*}, Grant 2001, Heat Engine, Renno and Ingersoll, JAS 1996)

Large impact in physics from <u>clw detrainment</u> profiles

rIM, 120hr forecasts, 30 days, only change is a slight modification of clw detrainment

WRF, 12hr forecasts, RAP with cycling for 10 days, many other changes

Small changes in clw/ice detrainment can cause large impact in biases – interaction with microphysics

Tuning: usually done within a physics suite, will determine statistical performance for operational applications!

- WRF version of GF was tuned to meet RAP standards (RAP/HRRR physics suite), focus on CONUS, short range storm scale type verification
- Use in other suites may require significant amount of work
- Example: GEOS-5 (NASA's version of FV3)

RAP CSI/BIAS Precipitation Summer (Three Weeks Jul 2016)

GF in NASA GEOS Model, Summary of scale dependence tests: Saulo Freitas probably spent close to half a year tuning global precipitation (now very close to observed)

GEOS Model Resolution		Precipitation (mm/day)	
		PARAMETERIZED (PARAM/TOTAL)	TOTAL
C180	~ 50km	1.75 (55%)	3.20
C360	~ 25km	1.59 (50%)	3.21
C720	~ 12km	1.19 (38%)	3.17
C1000	~ 09km	0.84 (26%)	3.23
C1440	~ 06km	0.54 (16%)	3.28

Technical changes in new GF scheme

Splitting the module into three parts:

- Driver (may be different for various physics suites)
- Module for deep convection (independent of dynamic core or physics suite)
- Module for shallow convection (also independent)

General clean up of unused arrays, and adding comments

Near future experiments with WRF and NGGPS: Memory and organization

- Depending on how long the convective parameterization has been active:
 - Modify entrainment rate
 - Modify vertical mass flux pdf's
 - Modify cloud water detrainment