Testing of Grell-Freitas scheme with HWRF model

Mrinal K Biswas¹

Collaborators:

K. Newman¹, E. Kalina², E. Grell², L. Carson¹, J. Frimel², G. Grell³, and L. Bernardet²

¹DTC,NCAR, ²DTC,ESRL,CIRES, ³ESRL

18th Annual WRF Users' Workshop, Boulder CO

Developmental Testbed Center

Motivation

- Can we improve intensity forecasts
 - NHC's official intensity error trend shows some improvement in intensity prediction
 - RI prediction still an issue
- Avenues currently persued
 - Improvement in data assimilation
 - Ocean response
 - Physics advancements

Posters:

P31 Kathryn Newman et al. An evaluation of cloud-radiation enhancements within the 2016 Hurricane WRF system.

P32 John Henderson et al. *Revisions to RRTMG cloud radiative transfer in HWRF.*

DTC's Testing Configurations

	Control – HWRF with SASAS (H6CL)	HWRF with GF (H6GF)
Cumulus	Scale Aware SAS	GF
Microphysics	Ferrier-Aligo	Ferrier-Aligo
Surface layer	HWRF	HWRF
Land surface	Noah LSM	Noah LSM
PBL	GFS Hybrid EDMF	GFS Hybrid EDMF
Radiation	RRTMG	RRTMG

HWRF grid configuration

Atmospheric configuration

Horizontal grid spacing: 18, 6, 2 km
Inner nests move to follow storm
Domain location vary from run to run depending on storm location
61 vertical levels; top at 2 hPa

Oceanic configuration – MPIPOM-TC

- •Horizontal grid spacing: 1/12 deg (~9km)
- •Location of grid depends of location of storm
- •Atlantic and N. Eastern Pacific
 - •3-D model
 - •23 vertical levels

Components of HWRF system

Developmental Testbed Center

Track and Intensity errors

Storms included: Gonzalo (2014), Edouard (2014), Matthew (2016)

Developmental Testbed Center-

Intensification

Control		Observation	
		RI	No RI
Model Forecast	RI	28	13
	No RI	52	472

GF		Observation	
		RI	No RI
Model Forecast	RI	38	26
	No RI	42	459

"RI" is defined as 20 kt intensity increase in 24 hr

Case study

Developmental Testbed Center

Differences in the intensity forecast can come from 1. Initial conditions 2. Physics differences 3. Large scale environment 4. Storm scale environment

Wind analysis @ t=0

Wind structure is different at t=0, due to cycling

Wind forecast

GF wind reach upper levels at t=15 h, when the intensities starts to diverge

GF 10m wind pattern is axisymetric at the center and is favorable for intensification

Vertical velocity

Vertically averaged vertical velocity for GF shows strong updrafts near the eye-wall region.

-10

-15

-10 -15 These vertical velocity contours show the location of the roots of the updraughts.

Developmental Testbed Center

Wind shear

CNTRL Shear 2014101312 015 h

18

GF Shear 2014101312 015 h

Cntrl-GF Shear 2014101312 072 h

12 15

Shear differences shows increase in environmental shear for control at longer lead times

DTC

Precipitation

Time series of area averaged accumulated precipitation

Developmental Testbed Center.

Temperature tendencies

Temperature tendency from the convective scheme is higher for control Temperature tendency from microphysics is higher for GF

Developmental Testbed Center

DTC

Scale Awareness

Summary

- HWRF-GF reduced track errors at longer lead times
- HWRF-GF alleviates the negative intensity bias compared to control
- Lower wind shear in the HWRF-GF favored intensification
- Updrafts were absent in the eye-wall region for the HWRF-SASAS
- The grid-scale precipitation was higher than convective precipitation in the HWRF-GF run
 - Microphysics is more active in HWRF-GF scheme

DTC visitor program

The DTC Visitor Program supports visitors to work with the DTC to test new data assimilation, forecasting and verification techniques, models and model components for numerical weather prediction (NWP). The goal is to provide the operational weather prediction centers [e.g., National Centers for Environmental Prediction (NCEP) and Air Force (AF)] with options for near-term advances in operational weather forecasting, and to provide researchers with NWP codes that represent the latest advances in technology.

http://www.dtcenter.org/visitors/opportunity/

