

Introducing Scale-Aware Microphysics and Aerosol Cloud Interactions to the Weather Research and Forecasting Model (WRF-ACI)

Timothy Glotfelty¹, Kiran Alapaty¹, Jian He¹, Patrick Hawbecker², Hugh Morrison³, Xiaoliang Song⁴, and Guang Zhang⁴

¹National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

> ²Department of Marine, Earth, and Atmospheric Sciences North Carolina State University, University Park, PA, USA

³Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, USA.

⁴Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

Presented at the 18th Annual WRF User's Workshop June 14th, 2017

Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

\$EPA

Aerosol Indirect Effects

Thermodynamic Invigoration

Some of the possible effects of anthropogenic aerosols on cloud structure and precipitation are illustrated in this conceptual cartoon. Cloud droplets coalesce into raindrops that rain out from pristine clouds. Anthropogenic aerosol perturbation causes formation of a larger number of smaller droplets which do not precipitate before reaching the freezing level, giving rise to deep and vigorous clouds that create thunderstorms and, possibly, hail. Secondary convection is promoted. (Rosenfeld et al., *Science*, 2008)

Major Objective

Develop a <u>scale-aware</u> modeling system to represent the impacts of aerosols on both grid-scale and subgrid-scale clouds for use in high resolution regional numerical weather prediction simulations supporting ecosystem and human health research studies at the US Environmental Protection Agency

€ FPA

Set EPA

WRF-ACI:

Weather Research and Forecasting Model with Aerosol Cloud Interactions

WRF-ACI has four components:

- Temporally and spatially varying bias corrected prescribed aerosol concentrations climatology with global coverage for current and future conditions
- Modified Song and Zhang (2011) subgrid-scale microphysics
- Consistent aerosol activation and ice nucleation parameterizations in both the grid-scale and subgrid-scale and microphysics packages
- Coupling of subgrid- and grid-scale microphysics to the radiation scheme

€PA

WRF-ACI Physics Configurations

- WRF Version: WRFv3.8.1
- Boundary Layer: YSU
- Land Surface Model: NOAH
- Cumulus Scheme: MSKF
- Microphysics: Morrison DMS
- Radiation: RRTMG
- Nudging: FDDA and FASDAS
- > Two Part Study: JJA 2006 (Summer) and NWP (7 day)
- > INPUTS: 12 km NAM, CESM-NCSU RCP4.5 (2001-2010)
- Evaluation Data: QCLCD, CERES-EBAF, MODIS, and PRISM

Part I (Model Evaluation)

Configuration of Simulations

Time Period: 3 months (June, July, and August 2006) Type: Seasonal /Long term Simulation Resolution: 12km Region: Eastern United States Simulations Default WRFv3.8.1 = WRF-BASE WRF-ACI Updates = WRF-ACI

Objectives

- 1) Quantify the differences between WRF-ACI and WRF-BASE
- 2) Evaluate model performance of WRF-BASE and WRF-ACI

Performance Evaluation of JJA Liquid and Ice Water Path

WRF-BASE

WRF-ACI

Performance Evaluation of JJA Radiation

WRF-BASE

CERES-EBAF Estimate

WRF-ACI

Max: 48.5 Min: 0.9 Mean: 17.1

85°W

90°W

75°W

80°W

100°W

95°W

		0	> c	<u>ہ</u>	в 9	0 5	5 0	ń 5	ź!	2	24	27	3		
E	WR	F-ACI										Stat	(SWCF)	WRF-BASE	WRF-ACI
	0.	.53										C	Corr.	0.64	0.67
	-13	3.90					Q						MB	-4.07	-4.88
	15	5.25					5	'				R	MSE	14.11	14.85

LWCF (W m⁻²)

Stat (LWCF)

Corr.

MB

RMSE

WRF-BAS

0.52

-9.86

12.03

SWCF (W m⁻²)

Performance Evaluation of JJA Precipitation

WRF-BASE

Stat	WRF-BASE	WRF-ACI
Corr.	0.76	0.78
MB	-48.42	-58.31
RMSE	96.74	101.22

28

ŝ

ŝ

\$

50

88

8

Performance Evaluation of JJA 2-m Temperature and Dew Point Temperature

Deviations from QCLCD Observations

Stat (T2)	WRF-BASE (Series)	WRF-ACI (Series)	WRF-BASE (Spatial)	WRF-ACI (Spatial)
Corr.	0.99	0.99	0.95	0.95
MB	0.02	0.11	0.02	0.11
RMSE	0.54	0.60	1.12	1.14

Stat (T _d)	WRF-BASE (Series)	WRF-ACI (Series)	WRF-BASE (Spatial)	WRF-ACI (Spatial)
Corr.	0.98	0.98	0.96	0.96
MB	0.71	0.60	0.49	0.40
RMSE	0.87	0.79	1.25	1.21

11

⇔EPA

Part II (Scale Dependency)

Configuration of Simulations

Time Period: 7-day (Jun 17th 00Z –Jun 24th 00Z 2006) Type: Numerical Weather Prediction Simulation Multiple Resolutions: 36km, 12km, and 4km Region: Southeast United States Simulations WRF-ACI Updates = WRF-ACI WRF-ACI updates = WRF-ACI

Objectives

- 1) Quantify aerosol indirect effects on cloud properties, precipitation, and radiation
- 2) Determine the scale dependency of these aerosol effects

LWP Impact (Cloud Lifetime Effect) (WRF-ACI minus LAERO)

Subgrid Scale LWP (g m⁻²) Grid Scale LWP (g m⁻²) Total LWP (g m⁻²)

Subarid Scale I 36°N 34% 36 km 32°N 30°N 28°N Max: 83.6 Min: -46.3 Mean: 9.6 26°N 94°W 92°W 90°W 88°W 86°W 84°W 82°W 80°W 78°\A Subgrid Scale LWF 36°N 34°N 12 km 32°N 30°N 28°N Max: 55.7 Min: -48.0 Mean: 3.7 26°N 94°W 92°W 90°W 88°W 86°W 84°W 82°W 80°W Subgrid Scale LWP 36°N 34°N **4 km** 32°N 30°N 28°N Max: 40.9 Min: -23.5 Mean: 1.1 26°N

94°W 92°W 90°W 88°W 86°W 84°W 82°W 80°W 78°W

SEPA

13

Precip. Impact (Cloud Lifetime/ Invigoration Effect (WRF-ACI minus LAERO)

Subgrid Scale Precip. (mm) Grid Scale Precip. (mm)

SEPA

Total Precip. (mm)

50

45

40

35

30

25

20

15 10 5

> 0 -5

-10

-15

-20

-25

-30

-35

-40

-45

-50

*⇒***EPA**

Radiation Impact (Cloud Lifetime Effect/ Cloud Albedo Effect) (WRF-ACI minus LAERO)

Shortwave Cloud Forcing (W m⁻²)

Longwave Cloud Forcing (W m⁻²)

- 1) The WRF-ACI system leads to improved LWP, IWP, and 2-m T_d but slightly worse LWCF, SWCF, Precipitation, and T2
- 2) The WRF-ACI system performs similarly to the default WRF model
- 3) A detectible cloud lifetime effect is present at all resolutions but it weakens with increasing resolution
- 4) Precipitation is generally suppressed in the Southeast U.S. due to aerosols
- 5) Changes in grid scale precipitation and cloud parameters from aerosols are not as straightforward as subgrid scale aerosol effects
- 6) The impact of aerosols on SWCF is fairly consistent across resolutions but the impact on LWCF varies significantly across resolutions
- 7) Overall, WRF-ACI provides the WRF community with a computationally efficient method for studying aerosol indirect effects on weather phenomena.

Thanks You

Questions?

Additional Material

Limitations and Future Work

- 1) The subgrid scale microphysics scheme over represents aerosol effects
- 2) Uncertainties are introduced by solving the grid scale microphysics after all other model physics processes
- 3) The scale dependency of aerosol formation is not considered in this study
- 4) Future work should focus linking the WRF-ACI and WRF-Chem frameworks
- 5) The subgrid scale microphysics scheme relies heavily on parameterizations designed for large scale clouds

EPA

- 6) Future work should focus on the development of more detailed subgrid scale microphysics based on deep convection
- 7) More case studies needed to be carried out to determine if the scale dependency of the aerosol effects vary by region or time period